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Kurzfassung
Diese Arbeit befasst sich mit der Entwicklung digitaler Schnittstellen zur Kopplung
von Echtzeitsimulatoren. Zu diesem Zweck wurde ein flexibles Framework imple-
mentiert, welches den synchronisierten Austausch von Simulationsdaten ermöglicht.
Harte Echtzeitanforderungen und die damit verbundenen Anforderungen an Kom-
munikationslatenzen im Mikrosekundenbereich machen eine FPGA-basierte Imple-
mentierung unumgänglich. Das VILLASfpga genannte Framework basiert auf Xil-
inx’s aktuellen Entwicklungsumgebung und nutzt AXI4 und AXI4-Stream Busse,
um bestehende IP Komponenten zu integrieren und deren Wiederverwendbarkeit
zu gewährleisten. Beispiele für solche Bausteine sind Modelle, die mit Hilfe von
Xilinx’s Vivado System Generator for DSP (XSG) und Vivado High-level Synthe-
sis (HLS) Werkzeugen entwickelt wurden oder auch Schnittstellen zu kommerzi-
ellen Simulatoren von RTDS oder OPAL-RT. Des Weiteren ermöglicht eine PCIe
Schnittstelle den Informationsaustausch zwischen dem Field Programmable Gate
Array (FPGA) und der bereits existierenden VILLASnode Software. Von speziellem
Interesse ist die Kopplung des Echtzeitsimulators von RTDS mit dieser Software, da
sie eine Reihe neuer Anwendungsmöglichkeiten eröffnet und die Flexibilität des Si-
mulators steigert. Sowohl die Schnittstelle zum RTDS Simulator als auch die PCI Ex-
press (PCIe) Schnittstelle zwischen FPGA und Linux-Rechner wurden im Hinblick
auf ihre Echtzeitfähigkeit ausführlich getestet. Einfache Modelle auf dem FPGA
und Linux-Rechner wurden verwendet, um die Erweiterbarkeit und Flexibilität des
Frameworks zu demonstrieren.

Stichwörter: Echtzeit, Co-Simulation, RTDS, GTFPGA, PCIe, Schnittstelle
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Abstract
This thesis focuses on the development of digital interfaces for the interconnection
of Digital Real-Time Simulation (DRTS). For this purpose, a flexible framework has
been implemented to facilitate the synchronized exchange of simulation data. Hard
real-time requirements and low communication latencies necessitate a FPGA-based
implementation. The VILLASfpga named framework uses Xilinx’ latest FPGAs
and design tools. It is built around industry standard AXI4 and AXI4-Stream
interfaces to warrant reusability and integration of existing Intellectual Property (IP)
components. Examples for such components are models implemented with Xilinx’s
XSG and HLS tools or interfaces to commercial DRTSs from RTDS or OPAL-RT.
Furthermore, a PCIe interface is used to integrate the FPGA framework with the
existing VILLASnode software. Coupling the DRTS from RTDS with this software
is of special interest as it opens a variety of new applications and increases the overall
flexibility of the simulator. Both the PCIe and Real-time Digital Simulator (RTDS)
interfaces have been evaluated in regard to their real-time performance. Simple
models on the FPGA and the Linux machine have been used to demonstrate the
extensibility and performance of the framework.

Keywords: Real-time, Co-Simulation, RTDS, GTFPGA, PCIe, Interface
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1 Introduction

1.1 Motivation
This master thesis introduces a FPGA-based framework for distributed co-simulation
of power systems. Advances in microprocessor technology and programmable logic
devices like FPGAs and specialized Digital Signal Processors (DSPs) are key en-
ablers of digital real-time simulation. Increasing performance, programability and
competitive costs of such devices are the main factors for the heterogenous range
of products which are available for real-time simulation today. At the same time,
interdisciplinary studies of complex systems necessitate the integration of multiple
platforms. Examples are multi-physics simulations of thermal and electric systems
or the simulation of mechanical torques which can be found in wind turbines or
electric vehicles. As the main motivation behind real-time simulation is testing of
real devices, custom requirements lead researchers to design their own specialized
Power-Hardware-in-the-Loop (PHIL) setups and experiments which need to be in-
tegrated into the simulation environment [4].

But not only the simulator hardware is becoming more heterogenous and di-
verse. Hybrid simulations combine multi-domain simulation approaches, such as
co-simulation of Electro-magnetic transient (EMT)-based solvers with solvers based
on Dynamic Phasors (DPs). In this case the interface is in charge of handling the
conversion between these two domains.

The ordinary approach for coupling real-time simulation equipment is using ana-
log signals. However, this method has a couple of disadvantages: Analog signals are
inherently susceptible to externally induced noise which degrades signal quality and
thereby limits the maximum length of the link. In addition, this noise limits analog-
digital converters in their resolution. Likewise the operational voltage ranges of the
converters are limited. Last but not least, every single signal requires a dedicated
cabling which gets cumbersome in cases where a large amount of signals or param-
eters have to be exchanged. An interface might not always be used for the interface
of 3-phase busses whose ranges are known in advance. Sometimes transfer functions
or other complex parameters have to be exchanged. In case the parameters may
vary of a wide range or their values are unknown, analog signals can not cover them
in their full precision.

Power system simulation mainly requires solving of large and sparse matrix equa-
tions and has therefore been a compute-bound problem. Gordon Moore predicted
the tremendous growth of computation power for the last decades. Lately, Moore’s
law lost its validity due to processors hitting the so called power-wall. The increas-
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1 Introduction

ing integration density and higher clock speeds are demanding more power which as
a result has to be dissipated as heat. However, the amount of energy which can be
dissipated is limited by physics. This restriction has been a catalyst for the devel-
opment of multi-core processors, distributed systems and specialized accelerators.
As a consequence, power system simulation has become a communication- instead
of a compute-bound problem. Especially real-time simulation is susceptible to this
bottleneck as hard deadlines must be met.

Finally, competition between vendors is an obstacle for integration. There is
currently no standard for real-time co-simulation. This motivated the design of a
vendor-neutral hub for real-time co-simulation. Such a central hub could act a gate-
way between a arbitrary number of simulation nodes (simulators, Hardware-in-the-Loop
(HIL) interfaces, monitoring and control devices or software). In future, this hope-
fully reliefs researchers from the burden of interface design and allow them to focus
on their research assignment.

Point-to-point interfaces are usually sufficient for simple setups with not more
than two nodes (simulators or HIL devices). But as soon as more nodes are involved
the number of possible point-to-point interfaces scales quadratic. A central intercon-
nect can alleviate this issue by providing a common interconnect for all interfaces.
Adding support for a simulator becomes easy as only a single new interface must be
implemented.

1.2 Objective
First ideas for this thesis arose from the demand of an interface between RTDS’s
DRTS and a Linux-based x86-machine. A requirement for such an interface has
been the ability to synchronize exchanged signals with the time step of the RTDS
simulator. Existing communication protocols supported by RTDS do not offer this
feature with the exception of a FPGA-based extension card called GTFPGA. In-
terfacing a commercial simulator to a generic Personal Computer (PC) and FPGA
significantly simplifies development of generic interfaces and thereby opens a new
range of possibilities.

Previous work implemented a flexible soft real-time co-simulation hub on a Linux
machine with similar goals. We named this software VILLASnode1. Following this
scheme, the new FPGA-based framework for hard real-time co-simulation is called
VILLASfpga. Based on the GTFPGA card, it realizes a flexible interconnect for a
variety of components involved in real-time simulation like DRTSs, FPGA-models or
custom HIL interfaces. This framework lays out the foundation for future projects,
emphasis on a well-thought-out design is therefore important. As motivated in the
previous section, it should support the extension with new interfaces like real-time
industrial ethernet (e.g. EtherCAT) or custom Aurora based communication links
like OPAL-RT Opal Remote IO Network (ORION) [6]. The interface to RTDS is
just one of many possible extensions and is presented here as an example.

1Previous publications also named it Simulator-to-Simulator Server, Sim2SimServer or S2SS.
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1.2 Objective

Models on the FPGA should be implemented with XSG or HLS to provide un-
experienced FPGA users a simple design entry method. An integration with the
existing VILLASnode software simplifies the usage by combining both the VIL-
LASnode and VILLASfpga configuration in a single file. At the same time, all the
existing interfaces which are supported by VILLASnode can be connected to the
new FPGA-based interconnect. VILLASnode provides an easy-to-use C Application
Programming Interface (API) for controlling and data exchange with the FPGA
framework. To leverage the performance of a FPGA implementation in conjunction
with the flexibility of VILLASnode a bridge between the FPGA and the Central
Processing Unit (CPU) is required. PCIe is the only user accessible, low-latency,
high-bandwidth interface in modern x86-based machines. It has to be employed for
synchronization and data exchange between the FPGA and CPU.

There is a number of industry standards protocols for Supervisory Control and
Data Acquisition (SCADA) and substation automation tasks. The most prominent
one is IEC 61850 which specifies Generic Object Oriented Substation Events (IEC
61850-8-1) (GOOSE) and Sampled Values (IEC 61850-9-2) (SV). These standards
often define data structures which are far to complex for the task of real-time co-
simulation. Most power system simulators have built-in support for those protocols
to test existing automation equipment and understand the influence of the protocols
in the system2. Due to the lack of alternatives, previous digital co-simulations often
used those protocols. However, none of them is actually designed for this purpose
and none of them has the notion of a simulation time step. There is no standardized
protocol which supports the synchronization with the accuracy of a simulation time
step in the range of 10 to 50 µs. In real-time co-simulation (not co-simulation of
communication protocols), the interface and the underlying protocols are not the
subject of the experiment. In fact, they are just the tool to enable them. Ideally,
their presence ideally would not have an impact onto the results of the simulation.
However, due to inevitable communication latencies this is not the case. Special
interface algorithms and decoupling methods must be employed.

In some applications like thermal / electric co-simulation, the communication
latency can be neglected as the thermal subsystem is running at much lower rate as
the electric subsystem. In this thesis, we focus on the implementation of a single-
rate interface as it has the most strict requirements. By demonstrating that these
tight timing requirements can be met, we implicitly show that the same interface
can also be used for less stringent demands.

1.2.1 Applications
In addition to the original goal, this framework envisioned to be used for the following
use cases:

Real-time co-operative simulation The model is separated into two subsystems
of which both are simulated in EMT-domain. One subsystem is simulated in

2E.g. for OPAL-RT: http://www.opal-rt.com/communication-protocols.
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1 Introduction

the real-time simulator while the other is simulated in real time by the Linux
machine. The interface delay is compensated based on a Bergeron traveling-
wave model of a transmission line.

Hybrid simulation The model is separated into two subsystems of which one is
simulated in DP-domain. This enables simulation of large-scale subsystems
in the phasor domain on the Linux machine or a dedicated High-performance
Computing (HPC) cluster. Regions of interest can still be simulated in high
resolution EMT-domain on the real-time simulator with a much smaller time
step than the phasor subsystem.

Geographically-distributed simulation Co-simulation over large geographical dis-
tances will be affected by significant communication latencies. These latencies
have to be predicted and compensated by using interface algorithms that can
be based on Discrete Fourier Transform (DFT) and wavelet transforms. Espe-
cially on public networks like the internet these latencies are hard to predict.
A central hub per laboratory can act as a gateway which implements those
interface algorithms and manages data exchange.

User interaction & Monitoring Interaction with real-time simulations is usually
done via vendor-specific tools like RTDS’s RTDS Simulator Software (RSCAD)
or OPAL-RT’s RT-LAB. Most of them already provide APIs to interact with
the simulator. Previous work has shown a web-interface for VILLASnode
which allows users to monitor and control the simulation using standard web-
browsers.

Big data analytics The presented framework offers the ability to record and replay
signals continuously for each and every time step of the simulation in a cus-
tomized and flexible manner. The collected results can be stored in Time-series
Database (TSDB) for subsequent offline analysis. Big data analytic methods
could be applied to study the vast amount of data. Existing record and replay
features only offer a limited sampling rate and a limited number of signals.

1.3 Related work
During the work on this thesis, ACS and OPAL-RT demonstrated the first fully-
digital interface between a RTDS rack and an OPAL-RT eMegaSim simulator [16].
For the first time, a synchronized and fully-digital co-simulation with only a single
time step latency between both real-time simulators has been possible.

The OPAL-RTDS interface as well as the interface which is presented in this thesis
are based on the GTFPGA block which has been block specifically developed in a
collaboration between RTDS Technologies and Florida State University’s Center for
Advanced Power Systems (CAPS) in 2009 [22] [24]. Since then, it was used regularly
used by CAPS for various research projects. Berger used it to implement a RTDS-
to-Aurora bridge for Controller-Hardware-in-the-Loop (CHIL) testing [5]. Stanovich
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1.4 Structure

et al. implemented a Multi-agent testbed using a RTDS-to-Ethernet gateway [25].
Rentachintala presents a co-simulation interface between RTDS and OPAL-RT using
a 11 bit parallel bus [21].

A combination of the GTFPGA block with PCIe interfaces was first mentioned
by Stanovich et al. in [26] and by Hu et al. in [10] in 2013. Unfortunately, both
publications lack details about their PCIe implementation.

RTDS supports distributed simulation across multiple RTDS racks by using a
custom Inter Rack Communication switch (IRC) switch which is described in chapter
3.5. However their internal communication protocol is undocumented. The only
possibility to get access to their simulator backplane is by using the GTFPGA
block.

OPAL-RT itself offers Aurora-based communication interfaces using SFP fiber
optics for their simulators3. Aurora (8B10B) is a data-link layer protocol developed
by Xilinx for high speed communication. The primary use-case of the interface
is for FPGA-to-FPGA communication or Modular Multi-level Converters (MMCs)
applications. When carefully designed it could also be used to connect multiple
RT-LAB nodes. However, the designated method for multi-target co-simulation is
the RT-LAB software [17]. RT-LAB supports FireWire, Infiniband, Shared Memory
(PCIe Scalable Coherent Interface (SCI)) as underlying communication protocols.

In 2006, OPAL-RT introduced Orchestra, a software communications framework
for real-time data exchange between RT-LAB Simulink-based models and external
software or hardware components [7]. Orchestra is built on top of the RT-LAB
software and therefore uses the same communication channels as RT-LAB. A custom
Orchestra API allows the integration of various software-based simulation tools like
Matlab/Simulink, Dymola or MATRIXx. Orchestra is real-time capable and was
inspired by the publish / subscribe concept of High Level Architecture (HLA) and
uses Extensible Markup Language (XML) for Distributed Data Structures (DDS).
A first application of this framework was presented in [18]. Paquin et al. present a
real-time co-simulation of an All-Electric Ship (AES) which is performed by a total of
three RT-LAB targets. Communication is done via Remote Memory Access (RMA)
over a Dolphin SCI interconnect.

Finally, Flajslik et al. present techniques to reduce the PCIe communication
latency for low-latency applications [9]. Using a FPGA prototyping board, they
present PIO and polling techniques which enables a direct data-transfer between
the FPGA and CPU without accessing the main memory of the system.

1.4 Structure
This introduction is followed by a brief introduction into the basics of real-time
simulation. The theory of co-operative simulation and the required synchronization
and communications schemes are covered in detail. Basic topics of modern computer

3http://www.opal-rt.com/aurora
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1 Introduction

architectures like interrupts and DMA are introduced as this work builds a bridge
between between computer and power system engineering.

The next chapter 3 covers the architecture of the co-simulation framework. It
starts off with the concept of the VILLASnode and continues by showing how this
concept has influenced the architecture of the FPGA-based hub. The architecture
describes main building blocks and their relationship. Different methods for data
transfer and synchronization between the FPGA and the host CPU are compared.

The implementation chapter 4 contains detailed descriptions of the aforemen-
tioned components. It shows the design flow used for implementation and depicts
ways to extend the framework with new components or models.

Functionality and performance of the framework is evaluated in chapter 5. Counter-
based models are presented to calculate time step-accurate round-trip time measure-
ments. Simple electrical models are used to showcase real-time co-simulations and
hybrids simulations between the Linux host and RTDS.

Finally the last chapter 6 summarizes the result, shows some example applications
and gives an outlook for possible future work.
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2 Theoretical background

2.1 Real-time Simulation
A simulation is a representation of the operation or features of a system through
the use or operation of another [27]. This thesis focuses on the digital real-time
simulation of electric power systems. Models are executed on specialized real-time
capable simulators or optimized computer systems. The most common approach for
the simulation of EMT-based models are fixed time step solvers. They approximate
the state of a time-continous model at discrete points in time whereas the state is
solely depending on the results of previous calculations and current inputs. The
period between two consecutive computations is called time step.

Real-time simulation refers to a model of a physical system that is executed at the
same rate as the actual wall clock time. A fixed time step solver has the advantage
that it can be executed in real time as long as the computation time does not exceed
the time step. Case (a) of figure 2.1 shows a fixed time step simulation which meets
this criterion. In case (b) the deadline for time step 𝑛 is missed out which causes an
overrun and the next step to be skipped. In comparison, the last case (c) displays an
offline simulation. Time steps are executed immediately one after the other without
idle delay in between.

Both Faruque [8] and Belanger [3] summarize the current state of the art in real-
time simulation electric power systems.

2.2 Co-operative Simulation
Co-operative simulation, or short co-simulation, describes the distributed simulation
of multiple subsystems which form a coupled system. Every subsystem is modelled
independently without detailed knowledge about details of the remaining system.
Usually, systems are decoupled across spatial boundaries like a transmission line
and only exchange a limited number of interface quantities. By limiting the amount
of exchanged information, every subsystem can be solved with a dedicated method
and / or timestep. In the context of power system simulation, a nodal admittance
matrix has be decomposed into several smaller problems.

There are several motives that make co-simulation indispensable and helpful that
at the same time may come with challenges:

• Different simulation tools often have to be integrated into a single simulation
environment. Legacy models are sometimes hard to port to a new simulation

7
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Figure 2.1: Fixed time step simulation [8].
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2.3 Soft & Hard Real-time Computing

tool or certain models require specific libraries which are only available in a
specific tool.

• Hybrid simulations may consist of EMT and DP-based subsystems. This re-
quires decoupling and conversion between the time and time-frequency domain
at subsystem boundary.

• Multi-physics simulations are an example where multiple time steps are used
throughout the model as well as diverse simulation models. Thermal models
are executed with time steps which are magnitudes larger than for electrical
models. Multi-rate setups must be synchronized properly at the interface.

2.3 Soft & Hard Real-time Computing
Real-time computing describes hardware or software systems which are subject to
a real-time constraint. This constraint is expressed in form of a deadline to which
the system must complete certain computations or react to an event. For soft
real-time systems, missing a deadline is acceptable but will cause in degradation of
system performance. Examples are multimedia applications like video decoders or
telephony. Hard real-time systems in contrast have to be designed in a way that
deadlines are always met. Overruns are unacceptable and can only be caused by
errors during system design. This restricts an engineer in the selection of algorithms.
The amount of computation time for a hard real-time capable algorithms must be
known in advance. This can be hard or even impossible to determine for iterative
solvers which are therefore rarely encountered in real-time simulation.

2.4 Synchronization
Synchronization is the coordination of events in a distributed system in such a
way that they coincidence in time. For most setups, synchronization information is
signalled over the same link as data, and therefore equally affected by communication
latency. This latency must be precisely estimated and compensated to guarantee
a temporal coincidence of the synchronized events in both simulators. Network
time protocols like Network Time Protocol (NTP), Precision Time Protocol (IEEE
1588) (PTP) or Inter Range Instrumentation Group Timecode B (IRIG-B) solve this
problem by implementing algorithms like Christian’s or Best Master Clock (BMC)
[2].

The most commonly synchronized event between simulators are:

1. The start or end of a simulation case.

2. The beginning of a new time step.

3. The update or sampling of hardware Input / Outputs (IOs).

9
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4. The completion of data exchange with other simulators.

A coordinated simulation start, ensures that results of the simulation are deter-
ministic between runs and realistically represent a real world scenario. Only a syn-
chronized start allows a transient response to be analysed. In AC systems, voltage
and current sources generate their output in relation to a global reference phase per
simulator. To couple certain active networks, the reference phases of involved sim-
ulators have to by aligned. This is usually guaranteed by starting both simulations
at the same time.

The synchronization of time steps is necessary to avoid a shift between of simulator
clocks. Without that, the time steps would drift apart after some time and the
communication phases of both simulators would not be aligned. Furthermore, it
would result in imprecise simulation results as the time step which is expected and
used for the calculations does not match the real elapsed time.

The main motivation for real-time simulation is the ability to control and test
real hardware. HIL experiments which are interfaced to multiple simulators require
that all simulators sample their inputs at the same point in time. Sampling and
the update of outputs is usually done periodically with the time step. As a result,
those events are occurring relative to the time step event. In case no real hardware
is attached to the simulators, the simulation actually can be simulated offline. In
an offline simulation only the logical order of time steps must be observed.

In a local environment, simple optical Pulse per Second (PPS) signals or Digital
IO (DIO) pins of the master simulator can be used to distribute the synchronization
information. These signals are only affected by a very small latency which is usually
far below 1 µs and jitter free.

However, if simulators are connected via an unreliable link like the internet, the
communication latency is also affected by jitter which makes it hard to reliably es-
timate the latency. Under such circumstances, common time references like atomic
clocks (Temps Atomique International (TAI)) or satellite navigation systems like
Global Positioning System (GPS) or Globalnaja Nawigazionnaja Sputnikowaja Sis-
tema (GLONASS) can be used as a synchronization source. They provide a highly
accurate and stable clock as well as a reference to absolute global time.

2.5 Clock Hierarchy
Apart from simulation-related clocks, like time steps, there are typically other clocks
involved in a distributed simulation as well. Processors, busses, memories, commu-
nication interfaces require their own dedicated clocking. The clock sources for those
components are mostly fixed by the architecture of the simulator. As listed in ta-
ble 2.1, only some of them are synchronized across the entire distributed system and
others, like for simulator processors and interfaces, are not. This is due to the high
clock speeds (> 100 MHz) and architectural limitations.

10
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Table 2.1: Clocks involved in heterogenous co-simulation.
Clock Frequency Synchronized?
Host CPU 3 GHz to 4 GHz no
FPGA models 200 MHz no
PCIe bus 125 MHz no
AXI busses 100 MHz no
Simulation time step 20 kHz to 100 kHz yes
AC Power System 50 Hz and 60 Hz yes

In a co-simulation, data needs to pass through several of those clocks. Whenever
two clocks are asynchronous, this boundary is referred to as a Clock domain crossing
(CDC). CDCs require special attention by the design engineer as they can cause
meta-stability as shown in figure 2.2. A signal which is synchronous to a clock
will always have a stable value at the rising edge of its clock. However, in a CDC
the signal is captured by a flip flop which is synchronous to a different clock. If
the rising edge of this destination clock happens to coincidence with the transition
of the data signal, the resulting state of the destination flip flop is undefined and
therefore meta-stable.

This problem must be resolved by synchronization circuits like a n-stage multi
flop synchronizer shown in figure 2.3. By chaining multiple capture flip-flops which
are clocked by the destination clock the probability for a metastable signal can be
reduced. The n-stage flop synchronizer adds n cycles latency to the signal. However,
if compared to the the simulation time step, this is negligible.

Destination clock

Source Data

Source clock

Destination Data

Meta-stability

Meta-stable Data

Delay

Figure 2.2: A meta-stable signal.
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Figure 2.3: A n-stage Flop Synchronizer to mitigate meta-stability.

2.6 Scheduling
During a co-simulation, all involved parties periodically exchange interface quantities
and compute their system solution for the next time step. The temporal order in
which this is done can be altered for improving certain aspects of the interface.

The simplest mode is shown in figure 2.4a, all simulators start their time step
cycle with the exchange of interface quantities while at the same time starting to
compute the solution for the next step. In this concurrent or parallel approach all
exchanged quantities represent the state of the previous time step as the quantities
of the current time step are yet to be calculated. This results in an inevitable
communication latency of at least one time step between all simulators. This latency
must be compensated by interface algorithms to guarantee system stability and
simulation fidelity. For a single time step latency (typically 50 µs) transmission line
models based on the travelling wave theory can be used.

Alternatively, a serial pattern can be used which is shown in figure 2.4b. Here the
computation phase of two simulators has been serialized. This eliminates the single
time step latency at the cost of half the available computation time per simulator
and it is in contrast with main motivation behind distributed simulation concept.
In contrast to the parallel exchange, the number of simulators which can participate
in the serial pattern is limited by the amount of computation and latencies as they
will sum up and may cause the deadline to be missed.

In a multi-rate simulation simulators run with different time step periods. The
ratio between the rates still must be an integral value. A typical application is the
co-simulation of a thermal - electrical systems where the thermal system runs with a
much bigger time step. Figure 2.5 shows the communication pattern of a multi-rate
co-simulation. Similar to the first two examples, serial and parallel patterns exists.

2.7 Computer Architecture
Modern computer systems are becoming more and more distributed. This applies
for distributed clusters which can be found in HPC as well as for single worksta-
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Figure 2.4: Co-simulation communication patterns.
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Figure 2.5: Multi-rate communication patterns.
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tions. These systems consist of multiple processors, a variety of peripherals like
memory, network cards and disk controllers. Lately, co-processors like specialized
Graphic Processing Units (GPUs), Intel’s Xeon Phi or FPGA-based accelerators are
supporting this trend.

When mapping simulations onto such architectures, especially real-time simu-
lations, a closer look to synchronization and data transfer between the involved
components is required.

2.7.1 Direct Memory Access (DMA) & Programmed IO (PIO)
With PIO and also called Memory-mapped IO (MMIO) the CPU issues single read
and write transfers for each data word. This can be done by mapping the device
memory into the physically addressable memory of the CPU. For PCIe devices
this mapping is configured by changing the so called PCIe Base Address Registers
(BARs). The CPU can only read and write word by word which limits has the
disadvantage that the CPU is kept contiguously busy similarly to polling which is
described in the next subsection.

As a consequence, DMA has been invented to avoid this. As of today, most
peripherals have their own DMA controllers on-board. DMA is a technique which
offloads the data transfer task to a dedicated controller. The CPU instructs the
DMA controller to perform a data transfer by writing to its device registers using
the previously described PIO. After initiating the transfer, the CPU can directly
continue with other tasks until the completion of the transfer is signalled to the
CPU by one of the two previously described mechanisms.

Simple DMA controllers only support a single outstanding transfer. Once a data
transfer has been configured and started, the CPU must wait for completion before
the subsequent transfer can be configured. More sophisticated DMA controllers
support Scatter-Gather (SG) operations. They can increase the performance of
many small transfers and facilitate transfers and configuration at the same time.
SG extends the simple DMA controller by adding support for multiple outstanding
operations. A dedicated memory region is shared by the CPU and DMA controller
to keep a queue of outstanding and completed of transfers. This queue contains
buffer descriptors which can be seen as little work packages. Every buffer descriptor
contains a source and destination address and the length of the transfer in bytes.

2.7.2 Polling & Interrupts
Since the early age of microprocessors, interrupts are the standard method to syn-
chronize peripheral devices with the main processor. Common examples are Network
Interface Controllerss (NICs) which notify the CPU about new incoming data or in-
put devices like mice and keyboards. Interrupts are triggered by asserting a special
interrupt pin of the processor. This causes the CPU to pause its current task by
branching into an interrupt sub routine. Because the interrupt line is shared be-
tween all peripherals the Interrupt Service Routine (ISR) has to determine which of
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those devices caused the interrupt. It then dispatches the interrupt service request
to a device-specific handler which is part of the Operating System (OS) driver. The
handler then has to react to the interrupt condition and initiate further actions.

Linux introduced a concept called soft interrupts which can postpone the execu-
tion of device-specific interrupt handlers to a later stage. The hardware ISR only
acknowledges the interrupt and schedules a tasklet to handle the data intensive tasks.
This mechanism has the advantage that it increases the number of interrupts which
can be handled.

Often it is needless to interrupt the CPU for every event which occurred on a
device. A good example are devices which generate a high amount of interrupts
like network cards. The arrival of a network packet is usually worthy to trigger
an interrupt. However, under high loads this would interrupt the CPU quite often
and hence limit the system performance. A concept called IRQ coalescing reduces
the load by delaying the interrupt until a certain amount of events occurred. The
benefit of this technique heavily depends on the requirements of the application. In
real-time applications coalescing is usually undesired because it artificially increases
the latency. Yet it can be used to increase the throughput of bandwidth intense
network applications.

The alternative to interrupts is polling. In contrast to interrupts, it does not
require special hardware like interrupt lines or controllers. Polling detects events
by repeatedly reading status registers of the memory of the device. This periodic
reading occupies the CPU and is therefore often avoided because no other tasks can
be executed while waiting for a new event. However, it can lead to a reduction of
interrupt latency because there is no overhead caused by the execution of interrupt
handlers.
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3 Architecture
This chapter describes key components and their relationship in the VILLASnode
and VILLASfpga frameworks. It starts by introducing a concept which is common to
both projects. The RTDS interface is of particular importance as it is one of the main
objectives for this work. The architecture is an effort to design a future-oriented
framework around this interface which can be extended with other interfaces or
FPGA-based models. Figure 3.1 shows a very high abstraction of the architecture.
It consists of the existing RTDS simulator and a new Xilinx VC707 FPGA board
which is inserted into a Intel x86_64 computer.

3.1 Concept
The following concept abstracts complex co-simulation setups with can consist out
of two or more subsystems. It hides slight differences in the architectures of VIL-
LASnode and VILLASfpga from the user. This unified abstraction allows the inte-
gration of these frameworks. A single configuration file can be used to configure the
complete setup.

Key components in a distributed simulation are subsystems and interfaces. In the
following description the terminology nodes and paths is used respectively.

A super-node is an instance of one of the frameworks (VILLASfpga or VIL-
LASnode). It controls and monitors several nodes and the paths across them. Super-
nodes can be connected by special node-types which are called data-movers. An
example for such a data-mover is a User Datagram Protocol (UDP) / IP based
socket connection for the connection of two VILLASnode instances over a network

GPC or PB5 card
in RTDS rack

Xilinx VC707 FPGA
Evaluation Board

Custom
C-code
Model

RTDS Fiber

Figure 3.1: High-level Architecture of RTDS to Linux interface.
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or a DMA controller for the data transfer between VILLASfpga and the host system
which runs VILLASnode.

A path is a unidirectional pipe between nodes. Every path must have a single
source node and can have multiple destinations. The path periodically reads samples
from the source nodes and sends them to all destination nodes. Synchronization is
done implicitly: A source node will block the read operation as long as there is no
new data available or the processing is still underway.

A node can be a physical simulator, a HIL experiment, sensors like Phasor Mea-
surement Units (PMUs) or virtual models. Every node is an instantiation of a
specific node-type and exists in a super-node. Most nodes have a single input and
output at which they can receive and send simulation data. Usually a node should
not artificially delay the processing in addition to the time they require for solving
or transmission (in case of a datamover). Hence, multiple nodes can be chained to-
gether while still being able to process a sample of simulation data in a single time
step. However, there is one exception to this rule: Node-types which are interfacing
real hardware must align their processing to a time step boundary. This is required
to guarantee a synchronized update and sampling of real world signals across all
involved nodes.

As shown in figure 3.2, this concept enables the user to build arbitrary complex
topologies for co-simulation.

Node
Path

Figure 3.2: Possible co-simulation topologies which can be realized.

Figure 3.3 shows an example for a full-featured setup of VILLASnode and VIL-
LASfpga consisting of three super-nodes and three simulators.

There are six main data paths in this example:

1. Simulator #1 ↔Simulator #2 via 1 , 11 - 13

2. Simulator #1 ↔Simulator #3 via 1 - 10

3. Simulator #1 →Time-series Database (TSDB) (Hadoop) via 1 - 8 , 16 -
17
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4. Simulator #3 →Time-series Database (TSDB) (Hadoop) via 10 , 9 , 16 , 17

5. Simulator #1 →User Interface (WebSockets) via 1 , 2 , 11 , 14 , 15

6. Simulator #3 →User Interface (WebSockets) via 10 - 5 , 14 , 15

Those paths are made up of several user-defined HLS / XSG and SW-based mod-
els: 2 , 3 , 5 7 and 8 . In this example, the internet link between super-nodes
#1 and #2 6 is coupled in phasor domain. Nodes 5 and 7 are models which
handle the transformation between DP- and EMT-domain.

PCIe
HLS
Model

XSG
Model

RTDS
Intf.

Simulator #1

Super-node #1 (VILLASfpga) Super-node #2 (VILLASnode) Super-node #3 (VILLASnode)

D
M

A

Web
Interf.

User

TSDB
Interf.

DP-
EMT
IA

DP-
EMT
IA

Time-series
Database

The Internet

Simulator #2 Simulator #3

Site A Site B

Fib
e
r

W
e
b

S
o
cke

ts

Socket

Socket

IP
/U

D
P

S
o
ck

e
t

S
o
ck

e
tIP/UDP

S
o
ck

e
t

D
M

A
D

M
A

D
M

APCIe

Model-node

Interface-node

User
Model

R
T-

LA
B

O
P
5

6
0

0

R
T-

LA
B

S
C

I 
S

h
. M

e
m

3 4 5 8

9

1013

2

7

12

1

6

11
14 16

15 17

Figure 3.3: Example of integrated setup consisting of two VILLASnode super-nodes
and a VILLASfpga instance.

3.2 VILLASfpga
In the VILLASfpga framework, nodes are realized by IP blocks which are instantiated
in the user FPGA-design. The type of nodes which are available for the VILLASfpga
differ from the ones which are available for VILLASnode. Figure 3.4 shows the high
level architecture. In this thesis, node-types for HLS and XSG models and the
RTDS interface have been implemented. The concept of a path are realized by a
FPGA-internal switching network which is based on AXI4-Stream busses (yellow).
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Fiber
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AXI4-Stream
Crossbar
Switch

Timer &
Counters

R

Industrial Ethernet  Controllers

Interrupt
Controller

Figure 3.4: The VILLASfpga architecture.

3.2.1 FPGA Evaluation Board
VILLASfpga is based on a VC707 evaluation board from Xilinx. The board is
interfaced via PCIe to a host machine which itself runs VILLASnode and used for
monitoring and controlling the VILLASfpga framework. This selection was made
based on the availability of boards which are supported by RTDS for its GTFPGA
interface. RTDS is selling the VC707 board as part of their MMC Support Unit1.
There are also versions of the interface which are compatible with older Virtex
5 and 6 FPGAs (ML507 and ML605 boards). However only the newest 7-series
FPGA families are supported by Xilinx’ new Vivado development environment which
will be extensively used due to its support for AXI4-based interconnect networks.
Furthermore, the old FPGAs are only supported by the older Xilinx Integrated
Synthesis Environment (ISE) development environment which is discontinued.

3.2.2 Interconnect
Figure 3.4 shows several internal and external interconnect networks used by the
FPGA framework.

PCIe (black) is used for interfacing the FPGA design to the host system. It allows
direct memory access from CPU to FPGA and vice versa. PCIe is a memory
addressable bus. Every read and write transaction is targeting a specific ad-
dress or address range. In the FPGA, the PCIe endpoint is implemented by a

1https://www.rtds.com/the-simulator/our-hardware/mmc-support-unit/
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hard-macro which is implemented in dedicated silicon instead of using generic
FPGA resources. On the host system, the PCIe root-complex is part of the
CPU or the IO Controller Hub (ICH).

AXI4 (dark red) is a memory-mapped bus as well. It is used only internally by the
FPGA. All PCIe transactions are translated to AXI4 transactions. Only high
bandwidth data-movers are connected to this bus.

AXI4-Lite (red) is a simplified version of the AXI4 interconnect without the support
for burst transfers. It is primarily used for register access if only single-beat
transfers are required. An example for such a register access is the configura-
tion of an IP block like the DMA controller or the change of parameters of a
node.

AXI4-Stream (yellow) is used for streaming packets between the nodes in the VIL-
LASfpga framework. Unlike the memory-mapped busses, transactions are not
targeting an address. They consist of one or many data-beats which are
grouped to packets.

The Advanced eXtensible Interface Bus (AXI) busses are standardized by the
Advanced Microcontroller Bus Architecture (AMBA) specification [1]. AMBA is a
standard introduced by ARM in 1996 which defines a family of busses: Advanced
High-performance Bus (AHB), Advanced Peripheral Bus (APB), AXI, AXI Co-
herency Extensions (ACE). Most ARM-based systems nowadays are premised on
the latest generation of AXI4 interconnect.

Because of its wide-spread adoption as an industry standard, AXI4 busses have
been chosen for the implementation. AXI4 busses meet all the requirements for the
transfer of small packets in this application. In most use-cases they reach 100 % of
the theoretical peak bandwidth.

Other protocols like IBM’s Processor Local Bus (PLB) or OpenCore’s Wishbone2

bus have been considered as well. The decision for AMBA busses has been made
due to the good availability of AXI-compatible IP by Xilinx’s new Vivado Integrated
Development Environment (IDE). Xilinx provides AXI infrastructure IP like inter-
connects, DMA controllers, clock or data width conversion free of charge.

Some of Xilinx’s earlier FPGA families included hard-macro processors based on
the PowerPC architecture. PowerPC is an architecture by International Business
Machines Corporation (IBM) and uses the PLB as its main interconnect. Beginning
with the 7-series family, Xilinx made a transition to ARM processors for their newer
SoCs (Zynq). This change was accompanied with the migration from PLB to AMBA
busses and the introduction of the Vivado IDE. Vivado is the successor of Xilinx’s
ISE and Xilinx Embedded Development Kit (EDK).

Other bus openly specified bus systems like the Wishbone bus have not been an
option due to their limited support and compatibility with the Vivado IDE.

2http://opencores.org/opencores,wishbone
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AXI and PCIe are not buses in the traditional sense as they do not use a shared
medium between all connected devices. Modern interconnection networks, also
called Network-on-Chip (NoC), are only using individual point-to-point links be-
tween devices and interconnect switches. Transactions on these links are always
initiated by a single master and targeting a single slave. This applies to both the
memory mapped AXI4 bus, as well as the AXI4-Streaming bus. Multiple IP blocks
can be linked by dedicated interconnect IP.

AXI4-Stream

Streaming busses have an important role in the VILLASfpga framework. Thus, they
will be covered here in detail.

An AXI4-Stream interface consists of usually five signals:

axi_clk is the interface clock. All other signals are synchronous to this clock mean-
ing that they are sampled at a rising edge of this clock.

axi_tvalid is asserted by the master in the same clock cycles as data signal axi_tdata
holds a valid value.

axi_tready is asserted by the slave as soon as it is ready to accept data. A data
beat is transferred as soon as both the axi_tvalid and axi_tready are si-
multaneously asserted. axi_tready might depend on axi_tvalid but not the
other way around.

axi_tlast is asserted by the master together with axi_tvalid to mark the end of
a packet.

axi_tdata is driven by the master and contains the data beats. Xilinx requires this
signal to have a width which is a multiple of 8 bit. In VILLASfpgaăall data
signals are 32 bit IEEE-754 single precision floating point numbers.

Figure 3.5 shows a transfer of a single packet on an AXI4-Stream link. AXI
interfaces are using a two-way handshake between the master and the slave. A
transaction is initiated by the master by driving the first data word to axi_tdata
and asserting axi_tvalid. The transfer of this first beat is completed by the slave
as soon as it asserts axi_tready. This allows the slave to throttle the data-transfer
by de-asserting axi_tready even during the transmission of a packet. If there is no
backpressure from the slave, AXI streaming links can transfer a single data beat per
clock cycle. VILLASfpga is using a data width of 32 bit for the axi_tdata signal
and a bus axi_clk of 125 MHz. This results in a bandwidth of around 475 MiB s−1

for the node-to-node links.
The big advantage of the streaming links is their low latency and minimal resource

usage. This is a requisite for Audio / Video (AV), network and simulation applica-
tions like VILLASfpga. In constrast to the memory-mapped AXI4 busses there are
no additional clock cycles required for the addressing.
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Figure 3.5: An AXI4-Stream transaction with four data beats.

In the scope of the VILLASfpga framework, every time step a sample is transferred
as a single AXI4-Stream packet. Multiple signals in a sample are transferred as
individual data beats of this packet.

The connection of multiple nodes can be realized with a crossbar switch. The
usage of a crossbar switch is optional but has the big advantage that routing between
all connected nodes can be reconfigured during run-time. This gives the user the
ability to test multiple different variants of a certain model or quickly switch between
multiple configurations without resynthesizing the FPGA bitstream. Figure 3.6
shows 16 nodes which are connected to a crossbar. In the example, the crossbar is
configured to route packets from source node 𝐶 over hops 𝑃 and 𝑂 to the destination
𝐹 . Figure 3.6a shows a logical abstraction of the same configuration. Xilinx’s AXI4-
Stream interconnect IP core supports up to 16 master and slave interfaces.

3.2.3 Data-movers
As stated earlier, VILLASfpga is using PCIe as its interface to the host machine.
Because this is a memory mapped bus, special node-types, the data-movers, are
required which translate the memory-mapped data on the AXI and PCIe busses
to packets on the AXI4-Stream links. Chapter 2.7.1 introduced two different ap-
proaches for data transfer between the FPGA and the CPU. To compare their
performance, three different data-movers have been tested: Both a simple and a SG
DMA controller as well as a First-in First-out (FIFO) queue which is controller via
PIO. Every datamover is realized as a node-type as part of the VILLAS concept.

VILLASfpga is not limited to a single instance of those data-movers. If desired,
the user has the choice which and how many data-movers will be instantiated in the
design. However, for most use cases a single data mover is sufficient.

3.2.4 Models
FPGA-based models profit from clock cycles as low as 5 ns and nearly unlimited
parallelism offered by the nature of Programmable Logic (PL) devices. Often used
in Rapid Control Prototyping (RCP) and simulation of power electronic converters,
these models use very small time step periods. For such applications, a model which
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Figure 3.6: Connectivity options of a 16-by-16 AXI4-Stream switch crossbar.
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has been previously simulated in VILLASnode or another simulator can be moved
to the FPGA. In this case, the PCIe interface would no longer be used for data
exchange but only to monitor and control the FPGA models.

To exploit the full capabilities of FPGAs, custom Hardware Description Language
(HDL) code like VHSIC Hardware Description Language (VHDL) or Verilog has to
be written. However, implementing bigger models using HDL is cumbersome and
error prone. Instead, more user-friendly and graphical RCP tools like Mathwork’s
Simulink, or National Instrument’s LabVIEW are used. This ongoing trend in digital
design raises the level of abstraction and is often referred to as Electronic System-
level Design (ESL) design. It hides details of the Register Transfer Level (RTL) from
the designer and enables them to focus on the design and behaviour of their model.
Yet, the designer has still to keep in mind the underlying FPGA architecture to
obtain an efficient implementation. A critical decision is the selection of a suitable
number format to discretize continuous quantities. Xilinx is providing their own
optimized Simulink blockset called Vivado System Generator for DSP (XSG) which
assists the designer in those considerations.

Alternatively, Mathworks offers a product called Simulink HDL coder. It can
transform any Simulink model consisting of standard blocks into HDL code. This
simplifies the adoption existing models to a FPGA implementation. Though, the
results of Simulink HDL coder are not optimized for a specific FPGA architecture.
In fact, the generated HDL code is generic and could be implemented on most
FPGAs or even in hard silicon.

Vivado High-level Synthesis (HLS) is another method introduced by ESL design.
It uses high-level programming languages as design entry. With certain restrictions,
HLS tools will transform this high-level language into HDL code. Xilinx supports
both C and C++ languages in its HLS tool. HLS is a very young technology. Xilinx
released the first version of HLS in 2013. Major improvements can be seen with
every released version of the tools.

In the course of the VILLASfpga implementation, both simple HLS and XSG
models have been implemented to provide a starting point for more complex models
designs in the future.

3.3 VILLASnode
VILLASnode implements the previously described concept as a software application
which runs on a Linux machine. Figure 3.7 shows several of the currently supported
node-types. Until now, VILLASnode has been mainly used as a gateway. However,
simple models can be implemented as a custom node-type using C code. In addition
VILLASnode is also used to control the VILLASfpga PCIe card which are plugged
into the same system. In this case, every datamover between VILLASfpga and
VILLASnode appears as a node in both frameworks. For the best performance
VILLASnode has been written in the C programming language and optimized for
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Figure 3.7: Overview of supported node-types by VILLASnode.

real-time operation. So for example, every path is processed in a dedicated thread
to guarantee a non-blocking operation.

As a little addition to the previously described concept, VILLASnode supports
hook functions which can be assigned to paths. These hook functions are executed
for every sample of simulation data. They can be used to alter the signals, e.g.
applying a simple filter operation, or filter the data based on various criteria. Most
of the node-types for example can not handle simulation time steps as low as 50 µs.
Instead a hook function is employed to reduce the interface rate. Other use cases
of hook functions are the collection of statistics, monitoring of the link qualities the
implementation of interface algorithms.

Figure 3.8 shows an example setup for internet-distributed simulation. Here ev-
ery site runs a dedicated VILLASnode instance. Locally available simulators are
connected to their corresponding VILLASnode instances. Communication between
the sites is handled by VILLASnode which is acting as a gateway.
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Figure 3.8: European Real-time Integrated Co-simulation laboratory (ERIC-LAB)
demonstration.

3.4 Host Machine
The host machine’s main task is to run the VILLASnode software and to house the
VILLASfpga PCIe-card. To have plenty of margin for models being executed in the
VILLASnode framework, a recent Intel x86_64 multi-core system was chosen. A
multi-core machine allows the concurrent execution of multiple paths / models on
different cores. The only alternative with approximate performance are ARM-based
systems. However, they rarely feature full-sized PCIe slots which are required for
the VC707 FPGA-board.

Instead of a dedicated FPGA-board, an integrated FPGA-CPU System-on-Chip
(SoC) like Xilinx’s Zynq architecture could be selected. It combines a PL with
two ARM processor cores (PS). Both parts of the architecture are tightly intercon-
nected by a total of nine AXI busses. It would provide the best connection between
VILLASnode which would run on the ARM cores and VILLASfpga which would
be implemented in the PL. Unfortunately, this FPGA architecture is not officially
supported by RTDS for its GTFPGA interface. Even though there are Zynq-based
SoC’s which are using the same Virtex-7 architecture for their programmable logic
as the VC707 board, it is questionable whether the RTDS interface would work.
Most parts of the VILLASfpga architecture are designed with the adaptability to
Zynq SoC’s in mind. For deployments where power consumption or size are criti-
cal, both VILLASnode and VILLASfpga could be ported to a Zynq-based system
without larger changes.
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The host machine runs a Fedora Linux OS for the execution of VILLASnode.
Linux is not a real-time OS by default. Hence, careful optimizations and tuning
are indispensable. The most important change is a PREEMPT_RT-patched kernel.
PREEMPT_RT3 is patch-set maintained by Thomas Gleixner to improve the real-time
performance of the vanilla4 Linux kernel.

The VILLASnode code and its portion which controls VILLASfpga is running in
the Linux userspace. Device drivers are usually part of the OS and therefore run
in kernelspace. However, this would cause a big number context switches between
the userspace application and the kernelspace driver. To eliminate this overhead
the driver was implemented as part of the userspace application. Yet, the driver
still needs to request resources from the OS: FPGA device memory needs to be
mapped into the userspace application and interrupts have to be forwarded. Linux
is providing two APIs which enable the implementation of PCIe device drivers in
userspace. By using one of those standard APIs an unmodified Linux kernel can be
used. This simplifies the maintenance and setup of the host machine. Both the UIO
and VFIO APIs have been considered and are presented in the following sections.

3.4.1 Userspace IO (UIO)
UIO is Linux’ first API for device drivers in userspace. It was introduced to Linux
in 2007 with version 2.6.235.

The UIO framework allows that certain parts of the driver can still remain in
kernel while most of it is implemented in userspace. The kernel stub part of the
UIO driver exposes its capabilities via ioctl() and mmap() system calls to the
userspace.

For most Peripheral Component Interconnect (PCI) devices the generic uio_pci_generic
kernel module can be used. It exposes access to the PCI BAR via mmap() and allows
the passthrough of legacy PCI interrupts.

A major limitation of UIO is the fact that PCI devices are not allowed to act
as a bus master. Bus mastering describes the ability of a PCI device to initiate
transactions on the bus. Acting as a master allows the device to access host memory
or other PCI devices directly. This is considered dangerous if not controlled by the
operating system itself and therefore disabled by UIO.

Without the ability to access host memory, DMA transfers are impossible. MSI
interrupts rely on bus mastering as well and are therefore disabled. Without PCIe
Message Signalled Interrupt (MSI) only the legacy interrupt mechanism is avail-
able which does not support vectors. To multiplex different interrupt sources an
additional interrupt controller is then required.

3https://www.osadl.org/Realtime-Linux.projects-realtime-linux.0.html
4A vanilla kernel is the unmodified upstream version of the Linux kernel.
5http://git.kernel.org/git/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;

h=beafc54c4e2fba24e1ca45cdb7f79d9aa83e3db1
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3.4.2 Virtual Function IO (VFIO)
VFIO is a newer API for accessing devices directly from userspace. It was introduced
to Linux in 2012 with version 3.6 6.

It has been primarily designed to improve the performance of PCI devices in
Kernel-based Virtual Machine (KVM). KVM is a full virtualization solution for
Linux which runs Virtual Machines (VMs) as a userspace processes. VFIO provides
a secure way to assign a PCIe device to a VM. To enhance the performance of
those PCIe devices they must be able to utilize their DMA controllers which in turn
requires that the PCIe devices must have bus mastering capabilities. Though, as
stated earlier, bus mastering can be dangerous as the PCIe device gains full control
over the system. In case the PCIe device is assigned to a VM or an userspace
application, an attacker who controls either one of those can gain access to the
host system. With the introduction of Intel’s VT-d virtualization technology, Input
/ Output MMUs (IOMMUs) and PCIe root complexes gained the flexibility to
effectively isolate PCIe devices from each other and the host memory. By isolation,
the device can be limited to access only certain parts of the address-space which
belong to the controlling userspace process. Thus the PCIe device is prohibited to
cause harm by accesses to the host kernel memory or other VMs.

Furthermore, VFIO provides a comprehensive ioctl()-based API to create DMA
memory mappings, register MSI interrupts and more. DMA mappings and BAR
accesses are created by using the mmap() system call. While UIO always requires
root permissions, VFIO can make use of Linux permissions system to allow arbitrary
users access to the PCIe device. This could be advantageous in environments like
HPC clusters where root access is restricted.

3.5 Real-time Digital Simulator (RTDS)
To demonstrate the functionality and performance of VILLASfpga, an interface to
the RTDS has been implemented. This interface can be seen as an example for
the extensibility of the VILLASfpga framework. As it is described below, RTDS is
based on custom hardware which also holds for the simulation software environment.
As such, it is a perfect example of mitigating interface issues of a vendor specific
solution based on a generic framework proposed in this thesis.

This sections starts by presenting the architecture of the Real-time Digital Simu-
lator (RTDS). RTDS is one of the two big players for digital real-time power system
simulation. With its introduction in 1993 RTDS was one of the first commercial
fully DRTS on the market [14].

Figure 3.9a shows a typical setup of a RTDS simulator which can be built up of
one or more cubicles. Each cubicle houses one or more racks. Each rack can be used

6https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=
cba3345cc494ad286ca8823f44b2c16cae496679
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(a) Cubicles configurations. (b) Architecture [8].

Figure 3.9: The Real-time Digital Simulator.

standalone or in combination with others for the simulation of larger systems. In
case of a multi-rack simulation an IRC is used to exchange simulation data and a
Global Bus Hub (GBH) is used to synchronize the time step between racks.

Each rack can contain up to six processing cards which are interconnected by a
backplane. Processing cards are the core of each simulator. They compute control
signals and the power system solution. RTDS is therefore continually updating
its processing cards. Table 3.1 gives an overview of existing generations of RTDS
processor cards.

A Giga Tranceiver Workstation Interface card (GTWIF) controls the time step
of a rack and coordinates communication over the rack backplane. It also handles
inter-rack communication and controls the rack by an Ethernet connection from a
RSCAD workstation.

Figure 3.9b shows the architecture of RTDS.
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Table 3.1: Generations of RTDS processor cards.
Year Abbr. Name #7 Processor Speed
1993 TPC Tandem Processor card 2 Analog Devices ADSP21062 12 MHz
1997 3PC Tripple Processor card 3 Analog Devices ADSP21062 40 MHz
2002 RPC RISC Processor card 2 IBM PowerPC 750CXe 600 MHz
2005 GPC Giga Processor card 2 IBM PowerPC 750GX 1 GHz
2011 PB5 PB5 Processor card 2 Freescale MC7448 1.7 GHz

Recent processing cards support the attachment of peripherals via Giga Tran-
ceiver (GT) fiber optic connections. Commonly found extensions modules are Giga
Tranceiver Input Output card (GTIO) or GTNET. A variety of different input /
output cards (GTDI, GTDO, GTAI, GTAO, GTFPI) enable the attachment of HIL
hardware to the simulator. The GTNET card allows data-exchange via standard
protocols like IEC 61850 Sampled Values, GOOSE, UDP, Transmission Control
Protocol (TCP) and more.

The following subsections highlight extension cards which are important for the
interface between RTDS and the co-simulation framework.

3.5.1 Giga Tranceiver Network card (GTNET)
The GTNET extension card provides a real time communication link to and from the
simulator via Ethernet. Several industry standard protocols like IEC 61850-9-2 SV,
GOOSE, Distributed Network Protocol (DNP3) or custom UDP / TCP protocols
are supported via exchangeable firmwares. The latest version of the GTNETx2 card
consists of two GTNET modules. Every module can execute a certain firmware
which enables simultaneous operation of two different protocols. Other features
include record and playback of large datasets from the workstation machine. The
card offers 100/1000 Copper, 100BASE-FX, or 1000BASE-SX fiber connections for
the interface to Ethernet networks.

At first glance this makes the GTNET card a perfect candidate for interfacing
RTDS to other simulators. Unfortunately, it is impossible to synchronize the in-
terfaces to the internal time step which is a premise for a tight coupling of two
simulators. The next section introduces an alternatives interface which supports
synchronization.

3.5.2 Giga Tranceiver Field Programmable Gate
Array (GTFPGA)

The Giga Tranceiver Field Programmable Gate Array (GTFPGA) board allows
users to interface their custom FPGA designs via fiber optics to GPC or PB5 pro-
cessing cards. Every time step, the user design can exchange up to 64 signals per
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Table 3.2: GTNET protocols with their supported number of signals and sending
rates.

Firmware Format Values Rate

GTNET-SKT UDP / TCP 300 1 kHz
60 5 kHz

GTNET-PMU IEEE C37.118
GTNET-GSE GOOSE 4 TX / RX modules à 64 pts.

GTNET-SV SV 4 streams (à 4 V + 4 I) 80 pts. / period
1 stream (à 4 V + 4 I) 256 pts. / period

GTNET-DNP3

DNP3 1024 binary output pts. 1 kHz
512 binary input pts. 1 kHz
500 analog output pts. 10 Hz
100 analog input pts. 10 Hz

GTNET-PLAYBACK COMTRADE 8 channels 20 kHz

direction with a RTDS processing card. The start of a simulation time step is sig-
nalled in-band over the fiber optic. This facilitates the time step synchronization
of FPGA designs with models executed on the simulator which is unique to the
GTFPGA interface.

The GTFPGA interface consists of several components:

1. Several blocks which can be integrated into the RSCAD model. They pro-
vide an interface control signals which then can be connected to controller
voltage and current sources. The primary use-case of the GTFPGA interface
is controlling MMCs. Several blocks for the small times-step Voltage Source
Converter (VSC) mode exist.

2. A closed-source netlist which can be integrated into a user FPGA design. This
netlist is currently only available for Virtex 5, 6 and 7 FPGAs.

3. A Xilinx FPGA evaluation board. RTDS is currently supporting the ML507,
ML605 and VC707 boards which are based on the above mentioned FPGAs.
Figure 3.11 shows the new VC707 FPGA board which is sold by RTDS as part
of their MMC Support Unit8.

The interface is implemented by incorporating the synthesized 9 netlist in the user-
defined FPGA design. By shipping a compiled netlist, RTDS protects its proprietary
protocol which they use on the Giga Tranceiver (GT) fiber connections. RTDS is
providing reference design for all of the supported boards as a starting point.

8https://www.rtds.com/the-simulator/our-hardware/mmc-support-unit/
9The process of compiling a VHDL description of a design into a gate-level description.

32

https://www.rtds.com/the-simulator/our-hardware/mmc-support-unit/


3.5 Real-time Digital Simulator (RTDS)

Figure 3.10: The GTNETx2 extension card for RTDS.

Figure 3.11: The Xilinx VC707 evaluation board.
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3.5.3 Giga Tranceiver Synchronization card (GTSYNC)
The GTSYNC extension card allows the synchronization of the simulation time step
to an external clock [23]. Unlike the other extension cards it is connected to the
GTWIF which is controlling the rack time step.

Figure 3.12 displays the GTSYNC card with multiple inputs and outputs for
synchronization signals. The card supports IRIG-B, PTP and PPS sources and can
relay the synchronization to several optical and coaxial PPS outputs.

Figure 3.12: The Giga Tranceiver Synchronization card (GTSYNC).

Main use-cases of this card are:

1. Reducing the clock drift of the internal GTWIF oscillator which is used to
generate the time steps.

2. Synchronization to a global time reference which is required for the test of
PMUs.

34



3.5 Real-time Digital Simulator (RTDS)

For co-simulation it is necessary to control the time step of all participating sim-
ulators. In first experiments, RTDS was distributing its time step as a master to
all connected devices. This can be done by using a digital IO pin or the in-band
synchronization signal from the fiber optic GTFPGA interface. For more complex
setups, it might be necessary to synchronize RTDS as a slave by providing the mas-
ter clock from the VILLASfpga board. According to RTDS, their simulator can
be externally synchronized by using the 1PPS or IRIG-B inputs of their GTSYNC
card. As long as the time step frequency is a round number (20000 Hz / 50 µs or
16000 Hz / 62.5 µs), the time step which occurs at the 1-second-mark will align with
the synchronization pulse of the PPS input. However, the start of the simulation
time step can be affected by jitter of up to 1 µs.
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VILLASfpga’s architecture shares several building blocks which can also be found
in standard Network Interface Controllerss (NICs). This chapter is focused on im-
plementation details of those and presents other components in the VILLASfpga
framework. A major part of this work is focused on the communication between the
FPGA board and the CPU via PCIe which will described in another section. The
last part of this chapter presents a design flow which has to be used for adding new
models or interfaces to the framework.

4.1 FPGA Evaluation Board
The Xilinx VC707 FPGA evaluation board features a wide range of connectivity op-
tions. Within this thesis, only the PCIe and SFP interfaces are used. Both interfaces
require very high link speeds with up to 5 Gbit s−1. The Virtex FPGAs provide spe-
cialized IO transceivers for such high speed interfaces. Other components including
flash and Random-Access Memory (RAM) memories, LEDs, a Liquid-crystal Dis-
play (LCD), push buttons, DisplayPort and Ethernet connections remain unused.

Figure 4.1 shows the card inserted in one of the PCIe slots of the host machine.
The board is build around a Virtex-7 XC7VX485T-2FFG1761C FPGA [39]. This
specific model supports up to 56 Gigabit Tranceiver (GTX) of which 27 are accessible
on the VC707 board:

• 8 wired to PCIe edge connector

• 1 wired to the SFP+ cage

• 1 wired to Serial Gigabit Media-independent Interface (SGMII) connection to
the Ethernet PHY

• 1 wired to Sub-Miniature-A (SMA) connectors

• 2x 8 wired to FPGA Mezzanine Card (FMC) HPC connectors.

Other features of the FPGA include [30]:

• 485760 Logic cells which are grouped into 75900 Configurable Logic Blocks
(CLB).

• 2800 DSP slices for hard-macro arithmetic operations
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• 37080 kBit of on-chip memory

• 4 hard-macro PCIe blocks

• 56 GTX

• 700 User IO pins

• 1 XADC analog to digital converter block

Figure 4.1: The VC707 board plugged into a PCIe slot of host machine.

4.1.1 SFP Fiber Module
Small Form-factor Pluggable (SFP) modules are an industry standard for exchange-
able network interface modules. It specifies both an electrical and mechanical inter-
face for those modules. Most common SFP modules like the one shown in figure 4.2a
are house optical and electrical tranceivers for 1000BASE Ethernet which can be
found in most modern network switches, routers or interface cards.

Within this thesis, SFP modules are used to connect the FPGA board to the
RTDS simulator. Inter alia, SFP modules are used by RTDS for the connection
between processing and extension cards. Their modules are using a link speed of
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2.5 Gbit s−1 and standard Lucent Connector (LC) fiber connections like depicted in
picture 4.2b.

(a) A SFP optical tranceiver module.
(b) A multi-mode fiber with Lucent

Connector.

Figure 4.2: RTDS connectivity technology based on LC connectors.

The VC707 board provides access to 16 additional GTX via two HPC FMC ex-
tension connectors. This enables the extension of the board with up to 16 additional
SFP cages with modules like shown in figure 4.3.

Figure 4.3: A FMC add-on module with four additional SFP cages.
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Δ𝑡 = 10𝑢𝑠 Time step (4.1)
𝑁 = 64 Values / Time step (4.2)
𝑀 = 4𝐵𝑦𝑡𝑒 Bytes / Value (4.3)
𝐵 = 𝑁 * 𝑀/Δ𝑡 = 25, 6𝑀𝑖𝐵/𝑠 Bandwidth (4.4)
𝑈 = 500𝑀𝑖𝐵/𝑠/𝐵 = 5% Utilization (4.5)

(4.6)

Figure 4.4: Estimate bandwidth requirement of VILLASfpga.

4.1.2 PCI Express (PCIe) Interface
PCI Express (PCIe) is a high throughput and low-latency interface used between
the FPGA board and the host system. The VC707 board supports up to eight
second generation PCIe lanes with a link speed up to 5 Gbit s−1. A bandwidth
of 500 MiB s−1 can be achieved per lane. This results in a maximum throughput of
4 GiB s−1 which is far more than required by VILLASfpga as proven by equation 4.4.
The VILLASfpga implementation is using 4 lanes.

PCIe is a serial point-to-point interface. Multiple PCIe Endpoints (EPs) like the
FPGA board are connected a single PCIe Root Complex (RC). Every connection
is made up of several lanes to maximize the throughput. Sometimes additional
switches are used to extend the topology as shown in figure 4.5.

Like the SFP cage, every PCIe lane is driven by single GTX of the FPGA. The
Virtex 7 FPGA features a integrated EP which is implemented as a hard macro. A
hard-macro is an application-specific implementation in silicon. By using it usage of
general FPGA logic ressources is reduced and performance is increased. It processes
the serial data link layer and frames incoming data into PCIe Transaction Layer
Packets (TLPs).

TLP packets are then translated by an AXI-to-PCI bridge. This bridge is an IP
block provided by Xilinx and implemented in standard FPGA logic resources. It
translates PCIe into AXI transactions and thereby allows memory accesses in both
directions. AXI masters in the FPGA gain the ability to read and write to memory
locations in the main system memory or other PCIe devices. In the same manner
as the CPU or other PCIe device can access memory or registers of AXI slaves.

Both the AXI and PCIe bus support burst transfers to accelerate the transfer
of continous memory ranges. The AXI-to-PCIe bridge does is performing well at
translating those burst transfers between the two protocols. However, burst transfers
on the PCIe bus are limited by page size boundaries. This means that they must
not cross a 4 kB aligned address.
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Data-movers which will be introduced in the next section must take care of that
limitation as it only exists on the PCIe bus. Yet, the IP cores are designed for the
AXI4 bus which does not impose this restriction.

CPU

Switch

MemoryPCIe Root complex

PCIe 
bridge to 
PCI/PCI-X

PCIe 
Endpoint

PCIe 
Endpoint

PCIe
Endpoint

Legacy
Endpoint

PCI/PCI-X

Figure 4.5: Example PCIe topology [19].

4.2 IP cores
The VILLASfpga design is composed of several IP building blocks or IP cores. Ta-
ble 4.1 lists cores used by VILLASfpga which have been provided by Xilinx or have
been self implemented.

The upper part of this table made up of node-types as described in section 3.1.
These IP cores always feature at least a master and slave AXI4-Stream interface
(AS) to exchange sample data with other nodes. Most of them also include an
AXI4-Slave interface (AM) for adjusting parameters via registers. Some node-types
require synchronization with other components of the system via interrupt lines (I).

4.2.1 Data-movers
Data-movers are special node-types which facilitate the data transfer between the
VILLASfpga and the VILLASnode domains. Hence, they can be also seen as an
interface or pipe with two ends. One end appears as a node in the VILLASnode
configuration, the other end exists in the VILLASfpga.

The host system is using addressable memory to store and exchange simulation
data. Whereas the FPGA is using AXI Stream links to connect the nodes. This
requires the data-movers to manage a translation between the memory-mapped and
streaming busses.
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Table 4.1: Existing VILLASfpga IP cores.
Name IP package Interfaces Vendor UG
HLS Model hls_* AS, AM User
XSG Model xsg_* AS, AM User
RTDS Interface rtds_axis AS, AM, I ACS
Simple & SG DMA axi_dma AS, AM, I Xilinx [31]
Memory-mapped to Stream FIFO axi_fifo_mm_s AS, AM, I Xilinx [36]
Stream Data FIFO axis_data_fifo AS Xilinx [38]
PCIe Interrupt controller axi_pcie_intc AM, I ACS [33]
AXI4-Stream Interconnect axis_interconnect AS, AM Xilinx [37]
AXI Memory-mapped Interconnect axi_interconnect AM Xilinx [20]
PCIe-AXI bridge axi_pcie AM, I Xilinx [34]
Timer / Counter axi_timer AM, I Xilinx [35]
Software (SW) Reset Trigger axi_gpio AM, I Xilinx [32]

Xilinx provides several datamover IP cores which have been evaluated and com-
pared in their performance.

Direct Memory Access (DMA)

As introduced in section 2.7.1, a DMA controller can be used to offload the task of
data transfer from the CPU. A standard DMA controller transfers data from one
memory-mapped location to another. However, as stated earlier, in this application
a translation of memory mapped data to streaming data is required.

As shown in figure 4.6, the DMA controller is made up of two channels

• The Memory-Map-to-Stream (MM2S) channel reads data from consecutive
memory map locations and sends it to the AXI4-Stream link.

• The Stream-to-Memory-Map (S2MM) channel receives data from the AXI4-
Stream and writes it to consecutive memory locations.

So both parts of the DMA controller have a streaming and memory map side.
Only the direction and therefore the master / slave role of the streaming side is
interchanged. The behaviour of a standard DMA controller can be obtained by
connecting the streaming sides of the S2MM and MM2S channels together. The
memory map side of both channels is realized as a AXI4-MM master. It will directly
access the main memory of the host system by using the AXI-PCIe bridge. A
significant advantage of the DMA controller is the ability to perform burst transfers.
This means that a transfer of bigger data chunks is accelerated because the address
information only has to be transmitted once. Xilinx’ DMA controller can be adjusted
by several parameters which will affect available features and the required FPGA
ressources. The designer has the choice between a Micro, Simple or SG version of
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Figure 4.6: Architecture of axi_dma DMA controller [31].
.

the IP core. In this implementation both the Simple and SG versions have been
used.

Memory-mapped FIFO (PIO)

Another datamover which has been evaluated is based on a FIFO queue.
Xilinx provides two different kinds of AXI4-Stream FIFO’s. A simple data FIFO

which features both an AXI4-Stream master and slave interface. It is not suitable
as a datamover as it lacks the ability to translate between memory map and stream-
ing interfaces. However, it can be used as a buffer between AXI4-Stream nodes
which put backpressure on the streaming links. Another type of data FIFO is a
memory-mapped FIFO which has an AXI4-Lite interface in addition to the stream-
ing interfaces. This AXI4-Lite interface can be used to fill or read data from the
internal FIFO. Figure 4.7 shows two channels similar to the DMA controller.

4.2.2 FPGA Models
Models for VILLASfpga can be implemented using Vivado System Generator for
DSP (XSG), Vivado High-level Synthesis (HLS) or pure VHDL / Verilog. Each
model should have at least AXI4-Stream interface to exchange sample values with
other nodes, interfaces or data-movers. Adjustable model parameters can accelerate
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Figure 4.7: Architecture of axi_fifo_mm_s FIFO [36].
.

productivity as bitstreams do not have to be regenerated for every change. Such pa-
rameters are accessible via AXI4 memory-mapped registers. It is worth mentioning
that read / write operations on those registers are not synchronized with processing
of AXI4-Stream data.

Both HLS and XSG handle the generation of AXI4-Slave interfaces for parameters
automatically. During synthesis, both tools generate a XML-based description of
available parameters, their data type, register address and more. This information
will be later used by VILLASnode to easily adjust parameters.

Vivado System Generator for DSP (XSG)

XSG is a Simulink blockset and a compiler which generates optimized HDL code
from models made up of those blocks. In the course of this thesis, simple AXI4-
Stream based models have been implemented. For example, figure 4.8 shows a
simple pipelined floating point multiplication. A big advantage of XSG is the ability
to choose the number format which is used by the FPGA. The designer has the
choice between single and double precision IEEE-754 floating point numbers or
arbitrary fixed precision data types. XSG also supports multi-rate designs. This
allows the designer to partition the model into several synchronous or asynchronous
clock domains which run at different frequencies. The support for AXI4-Stream
interfaces enables efficient pipelined implementation which can process a new value
every couple of clock cycles.

Parameters and other slowly changing values can be set and monitored using
an AXI4-Lite interface. An example for such a parameter is the variable factor in
figure 4.8. Unfortunately, XSG does not generate a machine readable description
of which parameters (Gateway In / Out blocks) are present in the design. Such a
description could be used to by VILLASnodeăto provide the user an easy way to
modify these parameters via the configuration file. To solve this issue, a Matlab-code
script has been written which inspects the model an generates such a description.
This list of AXI4-Lite parameters including their name, data-type and default value
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Figure 4.8: Vivado System Generator for DSP model using AXI4-Stream signals.

is then stored in a Read-Only Memory (ROM) which is part of the model itself.
During operation, VILLASnode reads the description of those parameters from the
model also via the AXI4-Lite interface.

Vivado High-level Synthesis (HLS)

Listing 4.1 shows the source code of a model equivalent to the previously presented
XSG model. It performs a simple multiplication of 32 bit floating point numbers
which are streamed to the input port. Like XSG, HLS supports AXI4, AXI4-Lite
and AXI4-Stream interfaces for parameters and pipelined streaming data.

To produce efficient code, the designer must follow certain coding style rules. One
example is the strictly sequential access to arrays in case a FIFO IP core should be
inferred. If the code instead accesses data in a random order, a generic and more
costly Block RAM memory will be used by HLS. Furthermore, the user can provide
hints to the compiler by using special #pragma directives. This approach is already
known from other HPC acceleration toolkits like OpenMP or OpenACC.

Xilinx is providing a couple of optimized C++ template libraries which simplify
the inferrence of certain IP cores like shift registers or DSP slices. Other examples
for such libraries are special classes for arbitrary fixed precision numbers or FIFO’s.

HLS has the big advantage that a designer can start from an existing C/C++
implementation and successively apply optimizations to obtain a performant and
pipelined HDL implementation. On the path to this goal, the designer will always
maintain a standard compliant C/C++ program which can be compiled with stan-
dard compilers. By providing test-benches, the user can verify both the compiled
software and HDL implementation and compare the results to each other.

Appendix A.2 shows the XML-based accelerator map file which describes the in-
terface of the HLS model. As mentioned earlier, this file includes all details required
to control the HLS model later on from VILLASnode.
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1 # include " ap_int .h"
2 # include " hls_stream .h"
3
4 struct axis {
5 float data;
6 ap_uint <1> last;
7 };
8
9 void hls_multiply (hls :: stream <axis > &input ,

→˓ hls :: stream <axis > &output , float factors [32]) {
10 # pragma \ac{HLS} \ac{ INTERFACE } ap_ctrl_none port= return
11 # pragma \ac{HLS} \ac{ INTERFACE } axis port=input , output
12 # pragma \ac{HLS} \ac{ INTERFACE } s_axilite port= factors

→˓ bundle = config
13 # pragma \ac{HLS} DATAFLOW
14
15 static ap_uint <8> i;
16
17 while (! input . empty ()) {
18 axis in , out;
19
20 input >> in;
21
22 out.data = in.data * factors [i++ % 10];
23 out.last = in.last;
24
25 output << out;
26
27 if (in.last)
28 i = 0;
29 }
30 }

Listing 4.1: Example HLS model

VHDL

The most fine grained control over FPGA ressources are attained when implement-
ing the model in pure HDL. Usually, this is the only possibility for specialized
interfaces or in situations where cycle accurate timing is required. Examples are
the RTDS interface which will be presented in the next section. This approach is
not manageable for larger models as complexity gets easily out of hand. However,
optimized custom HDL can be integrated into XSG models using a black-box block.
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Appendix A.3 shows the VHDL implementation of a simple model which applies
a fixed gain by using a DSP48 slice of the Virtex 7 FPGA.

4.2.3 RTDS Interface
An connection to the RTDS simulator is realized with the GTFPGA interface which
has been introduced in section 3.5.2.

The netlist contains a design entity which is called RTDS_InterfaceModule. Fig-
ure 4.9 shows the IO ports which are provided by this entity.

FPGA External Pins RTDS_InterfaceModule FPGA Internal Signals

SFP_RX_N
SFP_RX_P
SFP_TX_N
SFP_TX_P

MGTREFCLK
SYSCLK

Tx To RTDS

Rx From RTDS

LinkUp
CardDetected
CaseReset
CaseInit
PowerOnRst
Clk100M

UserTxAdr(7:0)
UserTxData(31:0)
UserTxWr
UserTxFull
UserLockBank
UserFreeBank
UserTxInProgress

UserVersion(15:0)

UserRxAdr(23:0)
UserRxData(31:0)
UserRxValid
UserTstepPulse

Figure 4.9: The GTFPGA netlist user interface.

External IO interfaces include two clocks and differential send / receive pairs for
the SFP cage. The module has to be clocked by a 200 MHz system clock and a
125 MHz clock for the GTX. All signals of the user interface are synchronous to the
100 MHz user clock (Clk100M). However, the rest of the FPGA design is based on
a clock which is provided by the PCIe component. This requires CDC circuitry to
synchronize between the two clock domains.

The GTX block is incorporated into the netlist and drives the SFP module for
the optical link. The link itself operates at a link speed of 2.5 Gbit s−1 which a 8/10
encoding for error correction. This results in an effective bandwidth of 250 MiB s−1.
Every signal is exchanged either as a 32 bit IEEE-754 single precision floating point
or integer value. With equation 4.4, a time step of 10uS and 64 values this results
in a utilization of around 10 %.

Figure 4.10 shows the timing of user interface signals. Receiving and sending side
of the netlist can be accessed independently. Both directions are buffered by internal
FIFO queues.
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Figure 4.10: Timing wave dump of RTDS_InterfaceModule.

The start of a new time step is signalled by RTDS using the UsertTstepPulse
signal. According to the manual, this signal is delayed by around 400 ns due to
latency added by the tranceivers and the optical link.

After the time step has started, user logic can start sending data to RTDS using
the state machine in figure 4.11. The user has to provide an address (UserTxAdr)
and a data word (UserTxData) before starting the write transaction by asserting
UserTxWr. Signals UserLockBank and UserFreeBank are used to switch between
two memory banks in the RTDS processing card. This ensures that all values which
are sent will be updated in the same time step.

Writing data to the GTFPGA netlist, will enqueue it into an internal FIFO.
Transmission is completed as soon as this internal FIFO is drained and signalled
by the de-assertion of UserTxInProgress. Measurements show that this signal is
asserted for 𝑛𝑐𝑙𝑘,𝑇 𝑥 = 𝑛𝑣𝑎𝑙𝑢𝑒𝑠 * 5 + 4 clock cycles in case 𝑛𝑣𝑎𝑙𝑢𝑒𝑠 values have been
previously written.

Approximately, 80 clock cycles after the time step has started, the netlist receives
the first value from the simulator. This number varies depending on the priority of
the GTFPGA block in the RSCAD draft which will affect its scheduling. Every 8
clock cycles a new value is provided to the user logic by asserting the UserRxValid
signal.

If 64 values are both sent and received to / from RTDS, the last value is received
584 clock cycles (5.84 µs) after the assertion of UserTstepPulse.

AXI4-Stream wrapper

To integrate the netlist into the VILLASfpga framework, a wrapper is required
which connects the user interface of the RTDS_InterfaceModule to AXI4-Streaming
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if (UserTstepPulse == '1')
Idle

UserLockBank = '1'
UserTxWr = '1'
i = 0

UserFreeBank = '1'
UserTxWr = '1'

UserTxAdr = i * 4
UserTxData = Data(i)
UserTxWr = '1'
i = i + 1

if (i == DataNum)

Lock

Send

Free

1. Wait for: UserTstepPulse to pulse for 1 clock cycle

2. Lock Bank: assert UserWr & UserLockBank for 1 clock cycle

3. Write Data: valid UserTxAdr & UserTxData with asserted UserWr

4. Free Bank: assert UserWr & UserFreeBank for 1 clock cycle

5. Wait for: UserRxValid to pulse repeatedly until all values have been received
(UserRxAdr & UserRxData valid)

Figure 4.11: State machine for sending values via the RTDS_InterfaceModule.
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busses. The wrapper has been implemented in VHDL and incorporates a state
machine for each direction.

Additionally, an AXI4-Lite interface has been added to provide access to status
and control registers. Listing 4.2 shows the register offsets and their function.

1 /* Register offsets */
2 # define RTDS_AXIS_SR_OFFSET 0x00 /**< Status Register

→˓ (read -only). See RTDS_AXIS_SR_ * constant . */
3 # define RTDS_AXIS_CR_OFFSET 0x04 /**< Control Register

→˓ (read/ write ) */
4 # define RTDS_AXIS_TSCNT_LOW_OFFSET 0x08 /**< Lower 32 bits

→˓ of time step counter (read -only). */
5 # define RTDS_AXIS_TSCNT_HIGH_OFFSET 0x0C /**< Higher 32

→˓ bits of time step counter (read -only). */
6 # define RTDS_AXIS_TS_PERIOD_OFFSET 0x10 /**< Period in

→˓ clock cycles of previous time step (read -only). */
7 # define RTDS_AXIS_COALESC_OFFSET 0x14 /**< \ac{IRQ}

→˓ Coalescing register (read/ write ). */
8 # define RTDS_AXIS_VERSION_OFFSET 0x18 /**< 16 bit version

→˓ field passed back to the rack for version reporting
→˓ ( visible from “”status command , read/write ). */

9 # define RTDS_AXIS_MRATE 0x1C /**< Multi -rate register */
10
11 /* Status register bits */
12 # define RTDS_AXIS_SR_CARDDETECTED (1 << 0) /**< ‘’1 when

→˓ \ac{RTDS} software has detected and configured card. */
13 # define RTDS_AXIS_SR_LINKUP (1 << 1) /**< ‘’1 when \ac{RTDS}

→˓ communication link has been negotiated . */
14 # define RTDS_AXIS_SR_TX_FULL (1 << 2) /**< Tx buffer is

→˓ full , writes that happen when UserTxFull”=1 will be
→˓ dropped ( Throttling / buffering is performed by
→˓ hardware ). */

15 # define RTDS_AXIS_SR_TX_INPROGRESS (1 << 3) /**< Indicates
→˓ when data is being put on link. */

16 # define RTDS_AXIS_SR_CASE_RUNNING (1 << 4) /**< There is
→˓ currently a simulation running . */

17
18 /* Control register bits */
19 # define RTDS_AXIS_CR_DISABLE_LINK 0 /**< Disable \ac{SFP}

→˓ \ac{TX} when set */

Listing 4.2: Registers of rtds_axis

The wrapper has been packaged together with the GTFPGA netlist into an IP
core called rtds_axis which can be added to an IPI block diagram.
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Three interrupt lines are provided to notify other IP cores or the host CPU about
events like the beginning of a time step (irq_ts or simulation case (irq_case). In
case of a running simulation, rtds_axis will indicate an overrun by asserting the
irq_overflow line. This condition is detected when no data has been sent or the
transmission is still in progress while the subsequent time step is starting.

The RTDS-to-AXI-Stream interface supports coalescing as described in section 2.7.2.
Although it is usually a bad idea to use this feature in a tightly coupled system. It
is useful in applications where the interface is just used to capture large amounts
of simulation data. In this case the number of generated interrupts can be reduced.
Data must then either buffered in FIFO or directly written to the host memory using
a DMA datamover. Multi-rate simulations are another use case where coalescing is
helpful.

RSCAD

RSCAD is a suite of tools for RTDS simulators. Its Draft module provides a graphi-
cal user interface to model complex power systems. All of the components described
in section 3.5 feature a block which can be instantiated into the design. Figure 4.12
shows the block which is used for the GTFPGA interface.

To GTFPGA

1Variables =

From GTFPGA

1Variables =

Controls Proc 1
Port 1

GTFPGA

GTFPGA Card # 1

Figure 4.12: RSCAD block for GTNET interface.

Another tool of interest is CBuilder which allows to create new blocks for the
Draft module by using a variant of the C programming language. CBuilder has
been used to implement simple models which are used to verify the correctness of
the RTDS interface. As the models are implemented in a C-like language, they
can be easily ported to Linux. By complying to a basic structure CBuilder control
models can be compiled to run on VILLASnode without modifications.

4.2.4 Interrupt Controller
Several of the aforementioned IP cores support interrupts. For example, data-movers
trigger an interrupt to signalize the completion of a transfer or an error condition.
As another example, the RTDS interface generates a new interrupt evertime a new
time step begins. These interrupts are a simple signal which is either edge or level
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sensitive. All interrupt lines are connected to the interrupt controller which is de-
scribed in this section.

The interrupt controller forwards these interrupts to the host CPU using MSIs.
The AXI-PCIe bridge already includes support for sending MSI interrupts to the
IO APIC (IOAPIC) of the host system. Up to 32 different interrupt sources can be
differentiated by using a 5-bit vector. The delivery of an MSI interrupt is acknowl-
edged by a signal named INTX_MSI_Granted. Only after this acknowledgement, the
bridge is ready to accept the next interrupt from the interrupt controller.

The interrupt controller in the VILLASfpga implementation is based on a Programmable
Interrupt Controller (PIC) which is designed by Xilinx for their Microblaze proces-
sors. This PIC has a slightly different acknowledgment procedure than the one
which is provided by the AXI-PCIe bridge. Hence, the PIC (axi_intc) has been
encapsulated in a wrapper (axi_pcie_intc) which emulates the acknowledgment
procedure of the Microblaze processor.

The main task of the interrupt controller is to detect interrupts on up to 32 in-
terrupt lines and to generate the appropriate 5-bit vector when the previous MSI
has been acknowledged. In case multiple interrupts are triggered simultaneously,
the interrupt controller has to decide which one gets serviced first by assigning pri-
orities. Furthermore, individual interrupts can be disabled or emulated by software
for testing.

SW writing to a special interrupt status register can trigger an interrupt manually.
This feature has been used to measure the interrupt latency from FPGA to the
userspace application.

Table 4.2: Several interrupt sources of the VILLASfpga framework.
Signal Clock Type
irq_timer_0 pcie_0.axi_aclk_out rising edge
irq_timer_1 pcie_0.axi_aclk_out rising edge
irq_dma_mm2s pcie_0.axi_aclk_out level high
irq_dma_s2mm pcie_0.axi_aclk_out level high
irq_fifo pcie_0.axi_aclk_out level high
irq_rtds_ts rtds_axis_0.clk100m rising edge
irq_rtds_overflow rtds_axis_0.clk100m rising edge
irq_rtds_case rtds_axis_0.clk100m rising edge

4.2.5 Timer / Counter
Xilinx provides a timer / counter IP core which can used to periodically generate
interrupts or Pulse-width Modulation (PWM) signals. A input capture unit allows
measuring the timing of other external signals like interrupts. The main use case in
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Figure 4.13: IPI: Top-level design.

the scope of VILLASfpga is the generation of a periodical time step signals which can
be used to synchronize FPGA- and CPU models. Also, it could be used to measure
period of an external synchronization signal like the RTDS time step period. In the
course of this work, the timer IP core was used to benchmark the synchronization
latency and jitter between the FPGA and the host CPU.

4.3 Vivado IP Integrator (IPI)
The Vivado IP Integrator is used to assemble the IP cores into a block diagram. This
graphical tool makes it easy to quickly modify certain parts of the top-level design
without touching with HDL code. Figures 4.13 show block diagrams of a simple
VILLASfpga design. It consists of the PCIe subsystem and the model hierarchy
which are shown in detail in diagrams 4.14 and 4.15.

Initially, this integration step has be done with Vivado System Generator for
DSP (XSG). As XSG is based on Simulink, it offers a similar Graphical User
Interface (GUI) like IPI to build block diagrams. However, XSG is mainly designed
for implementing DSP related models. It is not well suited for the integration
of complex AXI4-based IP cores like the ones listed in table 4.1. IPI supports
the integration of XSG as well as HLS models as shown in diagram 4.15. Several
limitations of XSG then lead to a re-implementation of the top-level design in IPI
which is more flexible and allows finer control over several details of the FPGA
design.
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Figure 4.14: IPI: PCIe subsystem.

54



4.4 Host Machine

M_AXI_DMA_PCIE

SYS_CLK[0:0]

S_AXI_LITE

aresetn

AXI Direct Memory Access

S_AXI_LITE
M_AXI_MM2S

M_AXI_S2MM

M_AXIS_MM2S
S_AXIS_S2MM

s_axi_lite_aclk

m_axi_mm2s_aclk

m_axi_s2mm_aclk

axi_resetn
mm2s_introut

s2mm_introut

AXI Interconnect

S00_AXI M00_AXI

S01_AXI

ACLK

ARESETN

AXI Interconnect

S00_AXI

M00_AXI

M02_AXI

M03_AXI

ACLK

ARESETN[0:0]

M03_ACLK

M03_ARESETN

AXI4-Stream Interconnect

S00_AXIS M00_AXIS

M01_AXISS01_AXIS

S_AXI_CTRL

S02_AXIS M02_AXIS

ACLK

ARESETN

S00_AXIS_ACLK

S00_AXIS_ARESETN

M00_AXIS_ACLK

M00_AXIS_ARESETN

clk

clkbuf

AXI4-Stream DFT

input_r

output_rap_clk

ap_rst_n

irq_rtds_case

irq_dma_mm2s

irq_dma_s2mm

irq_rtds_overflow

irq_rtds_ts

RTDS GTFPGA AXI4-Stream bridge

s_axi_ctl

m_axis

s_axis

clkbuf_q0

SFP

clk100m

aresetn

axi_resetn

SYS_CLK

irq_ts

irq_overflow

irq_case

sfp

Figure 4.15: IPI: Model Hierarchy.

Every IP core which is either connected to a AXI4-Lite or AXI4 bus will need
some address space. The address layout of memory mapped busses can be adjusted
by the IPI Address Editor as shown in figure 4.16.

4.4 Host Machine
As described in section 3.4.2, the VFIO API is used to access the FPGA card from a
user space application. In this case VILLASnode is the application which has been
extended for this purpose. VFIO imposes several requirements to the hardware of
the host machine. To properly isolate the PCIe device an IOMMU must be present
in the system. Intel Virtualization Technology for Directed IO (VT-d) provides this
feature on newer CPU micro-architectures (Intel Nehalem onwards).

The IOMMU translates memory accesses from IO devices to the main memory.
Figure 4.17 shows the relationship to the Memory Management Unit (MMU) which
has a similar purpose. Both MMUs can influence certain characteristics of the
memory access like caching or prohibit it at all.

Figure 4.18 shows the complete data path and the different address spaces which
are traversed. The userspace driver has to take these address translations into
account when configuring DMA transfers or accessing memory-mapped registers.
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Figure 4.16: IPI: Address editor for configuring the AXI4 memory-map.
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Figure 4.17: Relation of MMU and IOMMU [11].
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Figure 4.18: Address spaces and their translation involved in the VILLASfpga /
VILLASnode integration.

A fine-grained isolation of certain PCIe cards is made possible with PCIe Access
Control Services (ACS). ACS can isolate every PCIe Bus Device Function (BDF)
into its own IOMMU group. Therefore every PCIe device will get its own set of
translation tables in the IOMMU and therefore gain the ability to fully isolate the
devices. Without ACS all PCIe devices connected to the same PCIe root complex
will part of the same IOMMU group.

Before a device can be controlled via the VFIO API, all devices which are part
of the same IOMMU group must be bound to the VFIO driver. This is a security
precaution because devices belonging to the same IOMMU group can still read and
write to each others memories. In systems which lack the support for ACS, this
would require that all PCIe devices like network or graphics card must be bounded
to the VFIO driver and therefore loose their original functionality.

4.4.1 Linux Real-time optimizations
Linux is not a real-time OS by default. However, several optimizations can be made
to get almost hard real-time qualities.

The PREEMPT_RT patch-set is an ongoing effort to improve real-time properties of
Linux 1. Several contributions of this patch-set set have been already merged to the
mainline kernel. PREEMPT_RT makes the kernel space preemptive. Hence, operations
like network or disk IO which are processed by the kernel can be interrupted by other
processes which have higher priorities. This has been made possible by replacing
most spinlocks in the kernel with mutexes that support priority inheritance, as well
as moving all interrupt and software interrupts to kernel threads.

1https://rt.wiki.kernel.org/index.php/CONFIG_PREEMPT_RT_Patch
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System latency is a critical parameter for hard real-time applications. It measures
the maximum time the user task can be interrupted by other tasks or the OS itself.
Unexpected and high system latencies cause the application to miss its deadline.
In regard to VILLASfpga this means that results for the next time step will not
arrive in time at the destination simulator. Usually this simulator will then fall
back to use the results of the previous time steps which decreases simulation fidelity
and in the worst case causes system instabilities. Main causes for these latencies
and a pervasive OS noise are non-maskable interrupts, non-uniform memory and IO
access or contentions of system busses [29]. Most but not all of these disturbing side
effects can be isolated to certain noisy CPU cores while others can be used for the
execution for hard real-time tasks.

We can distinguish three main classes of interrupts:

1. The local timer interrupt periodically invokes the OS’s scheduler. The sched-
uler checks if there are any other tasks currently waiting to be executed and
eventually performs a context switch to one of those if they are of higher pri-
ority or the quota of the current process expires. On a multi-core machine,
certain CPU cores should be isolated for the exclusive use by VILLASnode.
By using the kernel boot parameter isolcpus=2,3, the OS is prohibited to
automatically schedule other processes to those cores. If there are no other
runnable tasks on the core, the schedule will just do some housekeeping and
pass control back to VILLASnode. Even though just for a small amount of
time, VILLASnode would still be interrupted periodically. Newer Linux ver-
sion can disable this periodic timer interrupt and run in a so called tickless
mode. The corresponding kernel boot parameter is nohz=on nohz_full=2,3.
Special attention is to be paid if a tickless kernel is used together with the
PREEMPT_RT patchset. Since version 4.0 of the Linux kernel, the real-time
optimized version can not completely disable the local timer interrupt 2.

2. Devices interrupts like MSIs, mice, keyboard or NIC will cause the OS to pass
control to the device driver which is in duty to handle the interrupt condition.
Using the file /proc/irq/[id]/smp_affinity each Interrupt Request (IRQ)
can be pinned to a set of CPU cores. This feature can be used to move all
non important IRQs away from the isolated cores. Devices which are not used
by the application can be completely disabled in the system firmware (BIOS)
or by blacklisting the device driver in the kernel. Of course, certain IRQs
should be pinned to the cores which are used by VILLASnode. Examples
are the interrupts of the VILLASfpga card or NICs which will be used for
communication.

3. System interrupts like NMI, SMI or various exceptions are of special inter-
est because they can not be masked3. Exceptions like a division by zero or

2http://www.spinics.net/lists/linux-rt-users/msg14226.html
3An interrupt can be temporarily disabled by masking it.
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a segmentation fault only occur due to erratic program behaviour. It is the
responsibility of the application programmer to prevent them by adding ap-
propriate tests. The page fault exception is a special case because it is also
triggered under normal operating conditions. Examples are memory accesses
to memory areas which have been allocated by a user application but never
actually used. Linux delays the actual allocation of memory until it is touched
for the first time. Another situation in which Page Fault (PF) exceptions are
thrown is in case of memory shortage. The OS will swap certain memory re-
gions out of the memory and store them on the hard drive. Whenever the user
access such an area, the OS has to load the previously swapped-out region
back to memory. As this can also happen during the normal execution of a
real-time application, special care has to be taken by locking and pre-faulting
all memory.
Unfortunately, some interrupts like System Management Interrupts (SMIs) or
Non-maskable Interrupts (NMIs) are even out of the control of the operating
system. The SMI is used to perform tasks like fan control or power manage-
ment and can suspend the whole system between micro to milliseconds. The
routine which handles this interrupt is part of system firmware and completely
out of control of the OS. Hence, it can be a killer of real-time applications.
Tools like hwlatdetect from the rt-tests suite4 can be used to detect the
existence of SMIs and to measure their maximum latency.

The number of interrupts which interrupt a certain core can be monitored by
/proc/interrupts. This is an easy way to check the effect of the previous opti-
mizations.

Further optimizations can be done in the system firmware (BIOS). All devices
which are not required by the application should be disabled or physically removed
from the machine. Switching the disk controller from Advanced Host Controller
Interface (AHCI) to AT Attachment (ATA) mode can improve the system latency.
Because of possible SMIs, all features related to power management, adaptive clock-
ing (Intel speed step), support for legacy Universal Serial Bus (USB) inputs devices
or fan control should be disabled. Intel’s virtualization technology (VT-d) is a re-
quirement to use VFIO in the userspace application.

A tool called tuned5 should be used to optimize the runtime kernel configuration
in regard to real time. By default Redhat based Linux distributions ship tuned with
a real-time profile which already includes most of the optimizations which have been
described above.

Another good resource for building real-time optimized applications is the Linux
RT-Wiki6.

4https://git.kernel.org/cgit/utils/rt-tests/rt-tests.git/
5https://fedorahosted.org/tuned/
6https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
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4 Implementation

4.4.2 Userspace Drivers
Section 3.4 covered two Linux userspace APIs for accessing PCIe devices, namely
UIO and VFIO. For the integration of VILLASfpga and VILLASnode, the VFIO
API has been chosen due to its range of features. VFIO provides an API to access
the PCIe card by means of MMIO. This means that parts of the AXI4 address space
are mapped into the Virtual Address (VA) space of the user space application.

Most of the previously described IP cores have a dedicated AXI4-Lite interface
which is used to access registers of this core. These registers are then used to control
the components.

Xilinx provides drivers for most of the IP cores7. They provide an abstraction
layer on top of direct register access. Technically, these drivers are intended to be
used with applications which run ARM or Microblaze processors. These drivers
are designed to be used in standalone applications and therefore to not pose any
requirements on an underlying OS. This makes it really simple to integrate them in
the VILLASnode userspace application.

For HLS and XSG models, drivers are automatically generated by Xilinx tools as
part of the synthesis process.

4.5 Synchronization
There are two fundamental different ways to synchronize the host system with the
FPGAs. Both of them have been described in section 2.7.2.

Interrupts are delivered by the previously described interrupt controller by means
of MSIs. MSIs are automatically acknowledged by the OS and the host system
interrupt controller.

VFIO will forward the interrupt requests to the user application by using a so
called event file descriptors (eventfd). This special file descriptor will block on a
read() operation until the next event occurs. Alternatively common file descriptor
operations like poll() or select are supported.

This requires that every interrupt is first handled in the VFIO kernel module
before it is passed to the user application. Fortunately this has the advantage that
the kernel can count the number of interrupts which occurred and report this to the
user application. So in case the user application is busy, a missed interrupt can be
detected.

The alternative polling does not require interaction with the VFIO kernel module.
Most IP cores and the PIC itself have an interrupt status register. By disabling the
physical assertion of the interrupt line, this status register can be used to detect an
interrupt condition by repeatedly reading its value via PIO.

7https://github.com/Xilinx/embeddedsw
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4.6 Design Flow
This chapter proposes a design flow which can be used to extend the VILLASfpga
framework. The description of those steps in a flow is a common methodology for
Application-specific Integrated Circuit (ASIC) and FPGA design. The variety of
design entry methods, intermediate files and tools justify this formalization. Fig-
ure 4.19 illustrates the flow on the whole.

Like its software counterpart, VILLASfpga can be extended with additional node-
types. A node-type is either a model or an interface. Those node-types can be im-
plemented by three different methods. Examples for custom VHDL code, Simulink-
based models and C/C++ code are given in A.

Simulink models are compiled by the Vivado System Generator into VHDL or
Verilog code. Likewise, C / C++ code is compiled by Vivado’s High-level Synthesis
tool. The generated or self-written HDL code has to be packaged by Vivado into
a IP package. Packaged IP is managed by Vivado’s IP Catalog. This repository of
contains both custom designed node IP and included vendor IP from Xilinx.

The IPI provides a user-friendly GUI for connecting blocks and assigning address
space in a block diagram. The diagram is the top-level design entity of VILLASfpga.
It includes several standard IP blocks from Xilinx like the PCIe-AXI bridge, inter-
rupt and DMA controllers. The user can extend this block diagram with additional
node or interface IP which has been packaged in a previous step. New IP has to be
connected by Xilinx AXI infrastructure IP.

The block diagram (.bd) is a XML file which is used to generate several output
products:

1. A Hardware Hand-off specification of included components, their connections
and most importantly a memory map. This XML-file (.hwh) will be later used
by VILLASnode to configure and control the FPGA card.

2. A VHDL / Verilog top-level entity which is used for the integration of all
blocks during synthesis.

3. Descriptions of used IP blocks and their parameters in form of XCI files.

Similar to the Hardware Hand-off file, Vivado HLS generates a Accelerator Map
XML-file which contains a description of parameters, inputs and outputs of the HLS
model. Likewise the System Generator Simulink model (.mdl) is a XML-file from
which input and output gateways can be extracted. In summary, VILLASfpga will
use a collection of XML-files to pass a detailed description of the FPGA design to
VILLASnode.

This design automation simplifies the integration of VILLASnode and VILLASf-
pga. Available nodes, interfaces and data-movers on the FPGA are automatically
detected by VILLASnode.
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Figure 4.19: Design flow for VILLASfpga framework.

62



4.6 Design Flow

After the final integration of all components has been completed, Vivado will
be used to start the synthesis and implementation runs. The final result of the
implementation is a bitstream file (.bit) It can be directly loaded to the FPGA
board using a USB cable and Vivado’s hardware manager.

Alternatively, the bitstream can be converted into a MCS file. MCS files describe
the data layout for Programmable Read-only Memory (PROM) / flash chips. Those
memory chips are used to automatically configure the FPGA without the need for
a dedicated workstation. The MCS file only has to be flashed once to the memory
chip.

For controlling the VILLASfpga board, VILLASnode requires detailed knowledge
of the actual IP cores which are instantiated in the FPGA design. This includes,
the memory map of the AXI busses, interrupt vectors associated to each IP core
and the routing of AXI4-Streaming busses between them. This information can be
extracted from various side products of the aforementioned flow (Hardware Hand-off
file, Simulink Model, HLS Accelerator Maps). Ideally, VILLASnode would access
those files directly. At the moment, the user must extract this information himself
and add it to the VILLASnode configuration manually. An example for such a
configuration file can be found in appendix A.1.

4.6.1 Software
The VILLASfpga framework integrates several design tools. Table 4.3 summarizes
the software which has been used.

Table 4.3: Software and Tools.
Product Vendor Version
RTDS_InterfaceModule netlist RTDS Revision 8 for VC707
RSCAD RTDS 4.007
Linux Kernel Linux Foundation 4.4.9 (PREEMPT_RT)
Fedora Server Distribution Fedora Project 23
Vivado Xilinx 2016.1
Vivado HLS Xilinx 2016.1
System Generator for DSP Xilinx 2016.1
Matlab / Simulink Mathworks 2015a
VILLASnode ACS Git
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5 Results
The findings of this work are summarized in two separate sections. The first section
covers the performance of the PCIe interface between the FPGA and the host system.
Afterwards two example applications in the field of power system simulation are
presented and evaluated.

Nonetheless, the principal products of this work are design files and software of the
VILLASfpga framework. FPGA design files and example models are provided within
the VILLASfpga Git repository1. The software which is required to control the
FPGA board is integrated into VILLASnode and therefore part of its Git repository2.

5.1 Test System
The following tests have been conducted on an existing server machine which was
previously used for VILLASnode. All of the real-time optimizations described in
section 4.4.1 have been applied. In some benchmarks a standard kernel and a
RT_PREEMPT kernel are compared. Benchmark processes are always pinned to an
isolated CPU on which they are the only runnable task. Interrupts of noninvolved
devices are mapped to remaining cores.

Details of the hardware and the software are given in table 5.1.

Table 5.1: Test system for VILLASnode benchmarks.
CPU Intel Xeon E3-1240 V2 @3.40GHz3

Chipset Intel C2024

RAM 8 GiB, DDR3 1333 MHz, ECC buffered
Mainboard ASUStek P8B-C Series5

Network Quad-port Intel 82574L Gigabit Ethernet, onboard6

1https://github.com/RWTH-ACS/VILLASfpga
2https://github.com/RWTH-ACS/VILLASnode

65

https://github.com/RWTH-ACS/VILLASfpga
https://github.com/RWTH-ACS/VILLASnode


5 Results

5.2 Interface
5.2.1 PCIe Interface
DMA vs PIO

Out of the three tested data-movers (FIFO, DMA & DMA with SG), the DMA
controllers offer the highest bandwidth between the host memory and the FPGA
for larger transfers. This is due to the fact that the FIFO datamover is accessed via
PIO. Figure 5.1 shows the time required by the CPU to read and write data via
PIO to the BAR0 memory region of the FPGA. Scaling is linear as every single data
word is transferred in an independent PCIe bus transaction. Especially reading is
very costly as every transaction requires the FPGA to generate a completion TLP
which contains the requested data. By using Vivado’s integrated logic analyzer, the
time between two consecutive reads has been measured to about 115 clock cycles
(around 1 µs). In comparison, consecutive write operations have a gap of about 5
clock cycles (40 ns). A write transaction is a so called posted operation which is not
acknowledged by a completion and therefore can be performed faster. Interleaving
reads and writes are even more costly as the CPU has to flush its write buffer before
the next read can be performed.
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Figure 5.1: Comparison of data-movers and simple PIO read / writes.
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Even though, modern Intel x86 CPUs are capable of issuing burst transfers on
the PCIe bus, this requires the memory of the FPGA to be mapped with the
Write-combine (WC) flag [28]. In this case up to 64 B can be written in a single
burst transfer by using AVX2 vector instructions. However, the VFIO driver API
can not map the FPGA memory with the WC flag. Similarly, burst read transfers
are only possible if the BAR0 is mapped as pre-fetchable.

Due to these limitations, PIO can not be used to transfer data in bursts to the
FPGA. PIO-based data-movers will not achieve satisfactory results until further
optimizations such as custom kernel modules will enable burst transfers.

Luckily, DMA transfers between the FPGA and the main memory of the host
system are not affected by this issue. Every packet on the AXI4-Stream bus is
transferred via an AXI4 / PCIe burst transfer. This allows the DMA controller to
almost fully saturate the AXI4 busses and reach the theoretical peak bandwidth. It
is worth mentioning that this peak bandwidth is much higher than what is required
by common VILLASfpga applications.

Interrupts vs. Polling

Figure 5.2 compares response time for events delivered with PCIe Message Signalled
Interrupt (MSI) versus polling. The benchmark has been conducted by faking an
event in the interrupt controller using so called software interrupts. This can be
done with a single PIO write to a register of the interrupt controller. Results show
that the polling latency averages around 1 µs which is almost half the latency seen
with interrupts (> 2 µs). Furthermore, the jitter associated with it is much higher
for interrupts. The latency measured for PIO-based polling pretty much matches
the time required for a 32 bit PIO read as shown in figure 5.1.

Figure 5.3 shows the jitter of a periodic timer interrupt which is generated on the
FPGA. The timer event is captured by the user application either by using polling
or MSI.

The results of this measurement are surprising. Usually, one would expect that
polling on a quiet real-time system yields the best results. However, the opposite
is the case: interrupts on the non real-time system show the smallest amount of
jitter. One explanation for this behaviour could be the fact that the benchmark is
the only process which runs on that core. There is no scheduling, priority inversion
or competition on shared resources in which the real-time kernel could show its
benefits. Or it could be that the Linux kernel schedules the interrupt handler based
on its own periodic timer interrupt. In this case, the observed jitter would not reflect
the jitter of the FPGA timer, but the one of the local APIC timer.

The jitter observed when polling on the interrupt registers is similar for both
kernels. However, its deviation is much larger than originally expected. It could be
ascribed to the observed gap time between two PIO reads of about 1 µs. This can

67



5 Results

���

���

���

���

���

���

���

�� �����

�����

�����

�����

������

������

������

������

�� ���� �� ���� �� ���� �� ���� �� ����

�
���

������������

������������

�������
���

Figure 5.2: Latency of interrupts versus polling for events generated by the FPGA.

be explained with the slow read speed. The polling jitter almost matches the time
which is required for a read.

5.2.2 RTDS Interface
Simple Round-trip Time (RTT) measurements have been conducted to measure the
latency introduced by the RTDS and PCIe interfaces. Both Linux and the simulator
are sending their current time step counter and loopback the counter value of their
opponent. The FPGA is just used to forward the simulation data between the two
nodes. The RSCAD model shown in figure 5.4 subtracts the received value from the
current to precisely determine the actual RTT. Figure 5.5 shows the relationship
between the RTTs and the employed communication pattern which was described
in section 2.6.

Linux is very flexible in choosing the point in time when data is sent. The best
RTT result can be achieved if RTDS sends its counter and Linux directly sends it
back. In case neither Linux nor RTDS perform other calculations, the RTT is equal
to a single time step. In contrast, RTDS can always send data shortly after the
beginning of its time step. It also requires one additional time step (green line) to
update the internal control variable before it can be sent back. This limitation leads
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to a RTT of at least two time steps. As a result, RTT is asymmetrical and can not
easily be used to derive the one-way latency. However, it helps in understanding the
exact timing and restrictions imposed by RTDS.

An overrun caused by the interface occurs in the case when the exchanged signals
arrive too late at the destination simulator to be considered in the next time step.
This situation can be easily detected by deviation in the measured RTT. The
stability of the interface depends on a variety of factors:

1. At first, a distinction based on the communication pattern is required. The
parallel pattern decouples the data exchange from the computation because
both can be executed concurrently. In the serial case, computation directly
reduces the time which is left for communication. Therefore, the parallel
pattern can be used with smaller time steps while still having the full time step
available to carry out computations. This comes at the cost of an additional
time step latency in comparison to the serial pattern. In the serial case, results
will be sent back much later (after computation has been finished). This makes
it more susceptible to overruns as the period where interrupts can happen is
larger and their consequences are more severe.

2. Secondly and much more important is the time step period of the simulation.
Tests have shown, that time steps above 25 µs are rather safe in both cases.
RTTs have been measured for hours without overruns. Below 25 µs, system
latencies caused by interrupts and other factors start to affect the stability. In
comparison, OPAL-RT’s eMegaSim simulators which use a similar architecture
support time steps as low as 20 µs. This simulator is also based on a x86
Linux machine paired with a Xilinx FPGA board which is connected via PCIe.
However, the typical time step for EMT-based simulation is 50 µs. If smaller
time steps are required, models can be ported to run on the FPGA with
timesteps smaller than a micro second.

3. The number of values which are exchanged can have an influence in case that
a PIO based data-mover like the FIFO is used. As stated earlier, PIO reads
require about 1 µs per signal.

Previous tests did not involve any heavy computation on the Linux machine. Yet
the amount of calculations which can be performed without missing deadlines is of
interest. To examine the limitations of the interface, the next benchmark solves
matrix inversions with varying dimensions. The workload is composed of a LU
matrix factorization with row pivoting implemented by Net-lib’s highly optimized
LAPACK routines. This workload as it is the dominant part in most Nodal-based
solvers for power system simulation.

Figure 5.6 shows the results of this test for a time step of 50 µs and a parallel
communication pattern. Problem sizes up to 𝑁 = 36 can be solved on the Linux
machine without missing any deadlines. Above that, almost all deadlines are missed
which will result in an increased latency and instabilities in the system.
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Figure 5.6: Missed deadlines versus dimension of matrix 𝐴 (dt = 50 µs).
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5.3 Applications
5.3.1 Simple Circuit
The RTT tests in the previous section only used control components in the RSCAD
model. They did not imply a power system solution. To examine the interplay
between the GTFPGA block and a power system solution a simple electrical circuit
is used. Figure 5.7 shows the system consisting of simple RLC components and how
it has been gradually decoupled into two subsystems SS1 and SS2. The first part
of the figure shows the integrated solution. In the second sub-figure, the system is
decoupled by an Ideal Transformer Model (ITM). In the next step, SS2 has been
replaced by a CBuilder component which models the behaviour of that part of the
circuit in C code. The CBuilder control component is not integrated into the power
system solution and therefore includes a simple trapezoidal solver. Then same C
code has been compiled as a model which is executed by VILLASnode on the Linux
system. The interface between the RTDS simulator and VILLASfpga is handled
by the GTFPGA block. All four implementations of this circuit are simulated in
parallel to allow for a comparison of the results which are shown in figure 5.8.

5.3.2 Hybrid DP-EMT simulation
To provide an example for the flexibility and performance of the VILLASfpga frame-
work, a simple EMT-to-DP transformation has been implemented on the FPGA.
The transformation from time to time-frequency domain is performed by a simple
short-time DFT which is applied to a sliding window which spans over a period of
the input signal.

There are efficient recursive algorithms for the calculation of such a DFT if only
a couple of frequency bins are of interest [13, 12]. Figure 5.9 shows the transfer
function of such an algorithm. As the window is shifted over the signal, the complex
DFT coefficients rotate with their corresponding frequency. However, DP are based
on a fixed reference frame. Therefore all coefficients must be corrected with a factor
𝐶𝑘(𝑛) in equation 5.3.

𝑆𝑘(𝑛) = 𝑒𝑗2𝜋𝑘[𝑆𝑘(𝑛 − 1) + 𝑥(𝑛) − 𝑥(𝑛 − 𝑁)] (5.1)
𝐶𝑘(𝑛) = 𝑒−𝑗2𝜋𝑘(𝑡−(𝑁+1))) (5.2)

𝐷𝑃𝑘(𝑛) = 2
𝑁

𝐶𝑘(𝑛)𝑆𝑘(𝑛) (5.3)

To showcase the most novel technology, the algorithm was implemented with
Vivado High-level Synthesis (HLS). Listing A.4 shows the source code of the trans-
formation.
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(a) 𝑉𝑠𝑠1.
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(b) 𝑉𝑠𝑠2.
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(c) 𝑉𝑠𝑠1𝑏 & 𝑉𝑠𝑠2𝑏.

Figure 5.8: Interface quantities of simple circuit model with a fundamental frequency
𝑓0 = 1𝑘𝐻𝑧 and time step of 25 µs.
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Figure 5.9: Sliding DFT algorithm [12].
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Figure 5.10: Wave dump of hls_dft.

Using Vivado’s integrated logic analyzer and debug features, the performance of
the implementation has been evaluated. The calculation of a single harmonic per
value and time step requires 68 clock cycles (544 ns). Thanks to a pipelined design
the calculation of subsequent harmonics only takes 2 additional clock cycles
(16 ns) as shown in the wave dump 5.10. For three values per time step and five
harmonics this sums up to 110 clock cycles (880 ns).

As usual, the IP core is controlable via an AXI4-Lite interface. This allows for
adjusting the number and the frequency of the calculated harmonics. Optionally, a
decimation ratio can be applied to reduce the amount of samples which are processed
by the DP-model on the CPU.

Loopback Test

For testing, RTDS sends time-domain data to the previously described DFT imple-
mentation on the FPGA. After computation, the FPGA sends back the complex
coefficients to RTDS. The signal is then reconstructed and compared with the ref-
erence signal as well as the reconstructed signal which has been transformed with
RTDS’s integrated DFT32 block.

The generation of a reference signal and its reconstruction from the complex DFT
coefficients is handled on the simulator itself. For the reference signal the sum of up
to five sinusoids with varying frequency, magnitude and phase is used. This signal
is then sampled and delayed based on user parameters. Both DFTs, the integrated

76



5.3 Applications

and the external one on the FPGA, calculate the DC, 1st, 3rd, 5th and 7th harmonic
components of the reference signal.

The plots in figure 5.11 display the results of the loopback test. It shows that the
DFT on the FPGA can achieve better results than the integrated DFT from RTDS.
The inherent latency of a single time step is almost imperceptible as the signal is
reconstructed with reference to the current simulation time directly in RTDS.
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(a) Slow modulation of of first harmonic.
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(b) Constant first and third harmonics.
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(c) Noisy first and third harmonics.

Figure 5.11: RTDS versus HLS DFT implementations for slow transients.
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(a) Modulation of amplitude.
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(b) Distorted RTDS DFT.
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(c) More harmonics and slow modulation.

Figure 5.12: RTDS versus HLS DFT implementations for fast transients.
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6 Conclusion
This work shows that real-time co-simulation of power systems in a heterogenous
environment is feasible. The GTFPGA netlist has been used to build a synchronized
interface between RTDS and a standard Linux application. Time steps as low as
25 µs can be synchronized while only introducing a single time step latency per
direction. This latency can be decreased even further if a serial communication
pattern is used. In this case the round-trip time is equal to a single time step if
the round is started by RTDS. These numbers align with the results gathered by
first tests of the interface between RTDS and OPAL-RT which have been conducted
previously.

The Xilinx Vivado IP integrator is well suited to build complex co-simulation
setups consisting of more than two targets. Its support for industry standard AXI4
interfaces enables the reuse of existing AXI4 infrastructure IP cores like data-movers
and the easy integration with modelling tools like the Vivado System Generator or
Vivado High-level Synthesis. These tools allow the implementation of new models on
the FPGA without deeper knowledge of a hardware description language like VHDL.
However, this flexibility comes at the cost of a complex design flow as described
in chapter 4.6. Therefore, a certain degree of FPGA design related knowledge is
required to get started.

The integration with existing VILLASnode software enables a wide range of ap-
plications and interfaces to existing web services or databases like FIWARE. The
execution of models on the Linux host machine is possible for time step above 25 µs.
This is usually sufficient for EMT-based co-simulation which is mostly using a 50 µs
time step period. Special optimizations are required for models which are executed
below this period and interfaced with the FPGA. As these optimizations require
rigorous measures they are not recommended. Instead, it is often easier to port the
model to the FPGA itself. Thereby, the communication overhead between the FPGA
and Linux can be eliminated. In comparison, commercial products like OPAL-RT’s
Linux-based eMegaSim simulator are limited to a minimum time step of 20 µs.

6.1 Future work
The product of this thesis is a versatile and extensible framework for the real-time
co-simulation of power systems and interfaces to simulators for other purposes such
as controller-in-the-loop. Two simple examples have been showcased to demonstrate
the functionality and performance of VILLASfpga. These designs should act as a
foundation for future applications like the ones which have been mentioned in sec-
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tion 1.2.1. Others include the addition of new interfaces to common industry field
busses like EtherCAT or PowerLink. PHIL amplifiers feature their own interfaces
like OPAL-RT’s ORION or several custom designed links based on Xilinx’s Aurora
protocol [5]. Xilinx’s new HLS or the System Generator tools enable the implemen-
tation of FPGA-based models by researchers who never worked with FPGAs before.
The new interface to the RTDS simulator offers a large range of new possibilities
like for example new flexible control algorithms which can be implemented in Linux.

Apart from new applications, several details of the framework can be improved. In
theory, some GTFPGA blocks are supported in RTDS’ small time step mode (VSC).
This mode can be used to reduce the cycle time between FPGA and RTDS even
below 10 µs. There is a chance that this mode can be used to overcome the maximum
number of 64 values which can be exchanged per time step. GTFPGA blocks for the
VSC mode already hint the possibility to use time division multiplexing to transfer
a large set of values by distributing them over multiple time steps. Other ways to
overcome this restriction are by adding more SFP modules to the FPGA board by
using an extension module as shown in section 4.1.1. Also, reverse engineering of
the GTFPGA code can be an option. RTDS is shipping PowerPC assembly .mc
files for its components with the RSCAD suite. Disassembly tools like Radare1 give
insights into the internal program flow of these blocks. The overall structure and
function calls of them are similar to custom CBuilder components. This suggests
that there could be a chance to build a custom version of the GTFPGA block.

There are also ways to improve communication latency and determinism of the
PCIe interface. In the current design, DMA controllers are used for data transfer
between the FPGA-board and system memory. A paper by Flajslik et al. demon-
strates a technique which reduces the latency by using the Last-level cache (LLC) to
bypass the system memory [9]. However, this form of PIO requires deeper changes
in the systems’ memory management which are feasible with VFIO. They also in-
troduce a concept which they call Network Interface Quibbles (NIQ) polling which
artificially delays the completion of a read request to interrupt status registers. By
doing so, they can effectively halt the CPU core for up to 50 ms2. If 50 ms have
passed and still no interrupt has occurred, the CPU will issue a new read request to
the same interrupt status register. In case of an event, the PCIe card will promptly
complete the read request with an appropriate response.

Section 4.4.1 describes limitations when executing hard real-time tasks on Linux.
More optimizations and special hardware can improve this. Specialized Real-time
Operating Systems (RTOSs) like VxWorks might be the best way to solve this issue.
Wassen and Lankes showed how modern Non-uniform Memory Access (NUMA)
systems can improve the real-time performance by isolating complete sockets of
the system [29]. On such more strictly isolated CPU cores, baremetal applications
or Asymmetric Multiprocessing (AMP) with a unikernel like HermitCore could be
tested [15]. Alternatively, a completely different architecture like Xilinx’s new Zynq-

1http://radare.org
2This is the limit imposed by the PCIe specification
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based systems could be used. Section 3.4 describes the advantages of a Zynq-based
platform because of their tighter integration of PL and ARM-based CPU cores in a
single chip.

A more theoretical problem is the search of suitable communication patterns for
co-simulation scenarios between more than two simulators. VILLASfpga is prepared
to support data exchange in such setups. Yet, the synchronization of such complex
topologies might contain an open question.

Automation of the framework utilization is a never-ending task. The integration
of VILLASnode and VILLASfpga can be further simplified. Currently, the user
has to provide a configuration file which lists all available models, interfaces and
auxiliary IP cores. This file can be automatically generated by using various side
output products of the Xilinx design flow as described in chapter 4.6.

83





Part I

Appendix

85





A Code examples

A.1 VILLASnode Configuration File for VILLASfpga

# Example configuration file for VILLASfpga / VILLASnode
#
# The syntax of this file is similar to JSON.
# A detailed description of the format can be found here:
# http:// www. hyperrealm .com/ libconfig / libconfig_manual .html
#
# Author : Steffen Vogel <stvogel@eonerc .rwth - aachen .de >
# Copyright : 2016 , Steffen Vogel
##

# ########### Global Options ############

affinity = 0x0C; # Mask of cores the server should run on
# This also maps the NIC interrupts to

→˓ those cores !

priority = 50; # Priority for the server tasks .
# Usually the server is using a

→˓ real -time FIFO
# scheduling algorithm

# ########### FPGA configuration ############

fpga = {
id = "10ee :7022 "; # Card identification
slot = " 01:00.0 "; # Usually only id or slot is required

do_reset = true; # Perform a full reset of the FPGA board
# Requires a IP core named ’axi_reset_0 ’

############ List of IP cores on FPGA ############
#
# Every IP core can have the following settings :
# baseaddr Baseaddress as accessible from BAR0 memory

→˓ region
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# irq Interrupt index of MSI interrupt controller
# port Port index of AXI4 - Stream interconnect

ips = {
### Utility IPs
axi_pcie_intc_0 = {

vlnv =
→˓ "acs. eonerc .rwth - aachen .de:user: axi_pcie_intc :1.0";

baseaddr = 0 xb000 ;
},
switch_0 = {

vlnv = " xilinx .com:ip: axis_interconnect :2.1"
baseaddr = 0 x5000 ;
num_ports = 10;

},
axi_reset_0 = {

vlnv = " xilinx .com:ip: axi_gpio :2.0";
baseaddr = 0 x7000 ;

},
timer_0 = {

vlnv = " xilinx .com:ip: axi_timer :2.0";
baseaddr = 0 x4000 ;
irq = 0;

},

### Data mover IPs
dma_0 = {

vlnv = " xilinx .com:ip: axi_dma :7.1";
baseaddr = 0 x3000 ;
port = 1;
irq = 3; # 3 = MM2S , 4 = S2MM

},
dma_1 = {

vlnv = " xilinx .com:ip: axi_dma :7.1";
baseaddr = 0 x2000 ;
port = 6;
irq = 3; # 3 = MM2S , 4 = S2MM

},
fifo_mm_s_0 = {

vlnv = " xilinx .com:ip: axi_fifo_mm_s :4.1";
baseaddr = 0 x6000 ;
baseaddr_axi4 = 0 xC000 ;
port = 2;
irq = 2; # MM2S + S2MM

},
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### Interface IPs
rtds_axis_0 = {

vlnv =
→˓ "acs. eonerc .rwth - aachen .de:user: rtds_axis :1.0";

baseaddr = 0x8000 ;
port = 0;
irq = 5; # 5 = TS , 6 = Overrun , 7 = Case

},

### Model IPs
hls_dft_0 = {

vlnv =
→˓ "acs. eonerc .rwth - aachen .de:hls: hls_dft :1.0";

baseaddr = 0x9000 ;
port = 5;
irq = 1;

period = 400; # In samples : 20 ms / 50 uS = 400
harmonics = [ 0, 1, 3, 5, 7 ];
decimation = 0; # 0 = disabled */

},
axis_data_fifo_0 = {

vlnv = " xilinx .com:ip: axis_data_fifo :1.1";
port = 3;

},
axis_data_fifo_1 = {

vlnv = " xilinx .com:ip: axis_data_fifo :1.1";
port = 6;

},
}

############ Switch config ############
# Connect IP core in VILLASfpga
# Requires a single IP core with VLNV:
# xilinx .com:ip: axis_interconnect
# And correct ’port ’ settings per IP

paths = (
// { in = " fifo_mm_s_0 ", out = " fifo_mm_s_0 " },
// { in = " dma_0 ", out = "dma_0 " },
// { in = " dma_1 ", out = "dma_1 " }
// { in = " rtds_axis_0 ", out = " fifo_mm_s_0 ", reverse = true

→˓ }
// { in = " rtds_axis_0 ", out = "dma_0 ", reverse = true

→˓ }
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{ in = " rtds_axis_0 ", out = " dma_1 ", reverse = true
→˓ }

// { in = " rtds_axis_0 ", out = " fifo_mm_s_0 ", reverse = true
→˓ }

// { in = "dma_0 ", out = " hls_dft_0 ", reverse = true
→˓ }

// { in = " rtds_axis_0 ", out = " hls_dft_0 ", reverse = true
→˓ }

)
}

# ########### List of plugins ############
#
# Additional node -types , hooks or VILLASfpga IP cores
# can be loaded by compiling them into a shared library and
# adding them to this list

plugins = [
"./ lib/ cbmodels / simple_circuit .so" # Providing ’cbuilder ’

→˓ model ’simple_circuit ’
]

# ########### Dictionary of nodes ############

nodes = {
dma_0 = {

type = "fpga"; # Datamovers to VILLASfpga
datamover = "dma_0 "; # Name of IP core in fpga.ips
use_irqs = false ; # Use polling or MSI interrupts ?

},
dma_1 = {

type = "fpga";
datamover = "dma_1 ";
use_irqs = false ;

},
fifo_0 = {

type = "fpga";
datamover = " fifo_mm_s_0 ";
use_irqs = false ;

},
simple_circuit = {

type = " cbuilder ";
model = " simple_circuit ",
timestep = 25e -6;
parameters = [

1.0, # R2 = 1 Ohm
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0.001 # C2 = 1000 uF
];

}
}

# ########### List of paths ############

paths = (
{ in = " dma_1 ", out = " simple_circuit ", reverse = true }

)

Listing A.1: Example configuration for VILLASnode

A.2 XML: Accelerator Map of hls_multiply

1 <?xml version ="1.0" encoding ="utf -8"?>
2 <xd:acceleratorMap xmlns:xd =" http: // www. xilinx .com/ xidane "

→˓ xd:functionName =" hls_multiply "
→˓ xd:componentRef =" hls_multiply "
→˓ xd:initiationInterval ="x" xd:clockPeriod =" 8.000000 "
→˓ xd:sequential ="true" xd:hostMachine ="64"
→˓ xd:reset =" control ">

3 <xd:arg xd:name =" input .data" xd:originalName =" input "
→˓ xd:direction ="in" xd:interfaceRef =" input_r "
→˓ xd:busTypeRef ="axis" xd:dataWidth ="32"/>

4 <xd:arg xd:name =" input .last" xd:originalName =" input "
→˓ xd:direction ="in" xd:interfaceRef =" input_r "
→˓ xd:busTypeRef ="axis" xd:dataWidth ="1"/>

5 <xd:arg xd:name =" output .data" xd:originalName =" output "
→˓ xd:direction ="out" xd:interfaceRef =" output_r "
→˓ xd:busTypeRef ="axis" xd:dataWidth ="32"/>

6 <xd:arg xd:name =" output .last" xd:originalName =" output "
→˓ xd:direction ="out" xd:interfaceRef =" output_r "
→˓ xd:busTypeRef ="axis" xd:dataWidth ="1"/>

7 <xd:arg xd:name =" factors []" xd:originalName =" factors "
→˓ xd:direction ="in" xd:interfaceRef =" s_axi_config "
→˓ xd:busTypeRef =" axilite " xd:offset ="0x80"
→˓ xd:arraySize ="32" xd:dataWidth ="32"/>

8 <xd:latencyEstimates xd:best -case="undef "
→˓ xd:worst -case=" undef " xd:average -case=" undef "/>

9 <xd:resourceEstimates xd:LUT ="348" xd:FF="335" xd:BRAM ="2"
→˓ xd:DSP ="3"/>
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10 </ xd:acceleratorMap >

Listing A.2: XML Accelerator Map of hls_multiply

A.3 VHDL: hdl_multiply

1 library ieee;
2 use ieee. std_logic_1164 .all;
3 use ieee. numeric_std .all;
4
5 entity hdl_multiply is
6 generic (
7 FACTOR : real := 3.3
8 );
9 port (

10 clk : in std_logic ;
11 aresetn : in std_logic ;
12 s_axis_input_tdata : in std_logic_vector (31 downto

→˓ 0);
13 s_axis_input_tvalid : in std_logic ;
14 s_axis_input_tlast : in std_logic ;
15 s_axis_input_tready : out std_logic ;
16 m_axis_output_tdata : out std_logic_vector (31 downto

→˓ 0);
17 m_axis_output_tvalid : out std_logic ;
18 m_axis_output_tlast : out std_logic ;
19 m_axis_output_tready : in std_logic
20 );
21 end entity ;
22
23 architecture rtl of hdl_multiply is
24 component multiply_floating_point_v7_1_0
25 port (
26 aclk : in std_logic ;
27 aclken : in std_logic ;
28 s_axis_a_tvalid : in std_logic ;
29 s_axis_a_tdata : in std_logic_vector (31 downto 0);
30 s_axis_a_tlast : in std_logic ;
31 s_axis_a_tready : out std_logic ;
32 s_axis_b_tvalid : in std_logic ;
33 s_axis_b_tdata : in std_logic_vector (31 downto 0);
34 s_axis_b_tlast : in std_logic ;
35 s_axis_b_tready : out std_logic ;
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36 m_axis_result_tvalid : out std_logic ;
37 m_axis_result_tdata : out std_logic_vector (31 downto

→˓ 0);
38 m_axis_result_tlast : out std_logic ;
39 m_axis_result_tready : in std_logic
40 );
41 end component ;
42 begin
43
44 -- IP generated with Vivado
45 MULTP : multiply_floating_point_v7_1_0
46 port map (
47 aclk => clk ,
48 aclken => ’1’,
49 -- Input
50 s_axis_a_tvalid => s_axis_input_tvalid ,
51 s_axis_a_tdata => s_axis_input_tdata ,
52 s_axis_a_tlast => s_axis_input_tlast ,
53 s_axis_a_tready => s_axis_input_tready ,
54 -- Factor
55 s_axis_b_tvalid => ’1’,
56 s_axis_b_tdata => to_slv ( to_float ( FACTOR )),
57 s_axis_b_tlast => ’0’,
58 s_axis_b_tready => open ,
59 -- Result
60 m_axis_result_tvalid => m_axis_output_tvalid ,
61 m_axis_result_tdata => m_axis_output_tdata ,
62 m_axis_result_tlast => m_axis_output_tlast ,
63 m_axis_result_tready => m_axis_output_tready
64 );
65
66 end architecture ;

Listing A.3: VHDL code of hdl_multiply

A.4 HLS: hls_dft

1 # include <iostream >
2 # include <complex >
3
4 # include <hls_math .h>
5 # include <ap_shift_reg .h>
6
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7 struct axis {
8 float data;
9 ap_uint <1> last;

10 };
11
12 /** DFT window period (1 / fundamental - frequency ) */
13 const float PERIOD = 1.0 / 50; // in sec
14
15 /** Simulation time step (1 / sample -rate) */
16 const float TIMESTEP = 50e -6; // in sec
17
18 /** Number of samples in a window */
19 const int NSAMPLES = 400; // PERIOD / TIMESTEP ;
20
21 /** Number of values per sample */
22 const int MAX_VALUES = 8;
23
24 /** Number of harmonics */
25 const int MAX_HARMONICS = 16;
26
27 /* Single precision pi constant becuase M_PI is double ! */
28 const float pi = 3.141592653589793238462643383279502884 f;
29
30 void hls_dft (stream <axis > &input , stream <axis > &output ,

→˓ float fharmonics [ MAX_HARMONICS ], ap_int <8>
→˓ num_harmonics , ap_int <8> decimation ) {

31 # pragma HLS INTERFACE s_axilite
→˓ port=return ,fharmonics , num_harmonics , decimation
→˓ bundle =ctrl

32 # pragma HLS INTERFACE axis port=input , output
33 # pragma HLS STREAM depth =64 variable =input , output
34 # pragma HLS DATAFLOW
35
36 /** Previous coefficients for incremental update */
37 static complex <float > coeffs [ MAX_HARMONICS ];
38
39 /* Time */
40 static float t;
41 static ap_int <32> decimation_cnt ;
42
43 /** Sliding window of samples */
44 static ap_shift_reg <float ,NSAMPLES > windows [ MAX_VALUES ];
45
46 /** AXI Stream signals */
47 axis real , imag , refph ;
48

94



A.4 HLS: hls_dft

49 LOOP_VALUES :
50 for (int index = 0; index < MAX_VALUES ; index ++) {
51 /* Read real - valued time - domain data from AXI Stream

→˓ interface */
52 axis in = input .read ();
53
54 /* Shift and get data from SLR */
55 float newest = in.data;
56 float oldest = windows [index ]. shift (newest , NSAMPLES -1);
57
58 LOOP_HARMONICS :
59 for (int i = 0; i < num_harmonics ; i++) {
60 # pragma HLS PIPELINE II =2
61
62 float pi_fharm = 2.0f * pi * fharmonics [i];
63
64 /* Recursive update */
65 coeffs [i] = polar <float >(1.0f, pi_fharm ) * ( coeffs [i]

→˓ + ( newest - oldest ));
66
67 /* Correction for stationary phasor */
68 complex <float > correction = polar <float >(1.0f,

→˓ pi_fharm * (t - ( NSAMPLES + 1)));
69 complex <float > result = 2.0f / NSAMPLES * coeffs [i] /

→˓ correction ;
70
71 /* DC component */
72 if (i == 0)
73 result /= 2.0f;
74
75 /* Update real part */
76 real.data = result .real ();
77 real.last = 0;
78
79 /* Update imaginary part */
80 imag.data = result .imag ();
81 imag.last = 0;
82
83 /* Only every ’th decimation_cnt ’th sample will be sent

→˓ via AXI4 - Stream */
84 if ( decimation_cnt == 0) {
85 output . write (real);
86 output . write (imag);
87 }
88 }
89
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90 if (in.last)
91 break ; /* start next packet */
92 }
93
94 /* The decimation_cnt suppresses the output of results */
95 if ( decimation_cnt == 0) {
96 decimation_cnt = decimation ;
97
98 /* Last word on AXI - Stream bus is the reference phase */
99 refph .data = t++;

100 refph .last = 1;
101 output .write (refph );
102 }
103 else
104 decimation_cnt --;
105 }

Listing A.4: HLS implementation of recursive DFT

A.5 Linux configuration

1 cmdline = intel_iommu =on isolcpus =2,3 nohz=on nohz_full =2,3
→˓ nosoftlockup intel_pstate = disable

Listing A.5: Linux boot command line.

1 CONFIG_PREEMPT_RT_FULL =y
2 CONFIG_DMAR_DEFAULT_ON =y
3 CONFIG_VFIO_IOMMU_TYPE1 =m
4 CONFIG_VFIO_VIRQFD =m
5 CONFIG_VFIO =m
6 CONFIG_VFIO_NOIOMMU =y
7 CONFIG_VFIO_PCI =m
8 CONFIG_VFIO_PCI_MMAP =y
9 CONFIG_VFIO_PCI_INTX =y

Listing A.6: Extract of Linux kernel build-time configuration.
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AHCI Advanced Host Controller Interface
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NTP Network Time Protocol
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TCP Transmission Control Protocol
UDP User Datagram Protocol
USB Universal Serial Bus
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PCI Peripheral Component Interconnect
PCIe PCI Express
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